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ABSTRACT

Predictive maintenance aims to anticipate component failures in order to replace the components at
the optimal time. In this context, methods for estimating the remaining useful life (RUL) of engine filters
are being developed at Liebherr Component Colmar.

The pressure signals upstream and downstream of the filters are measured by test bench sensors,
allowing to obtain a time series for the pressure difference across the filter, denoted by the differential
pressure, Delta_P. The pressure drop is considered as the best indicator of the filter's status in terms
of clogging. The visual analysis of such time series shows two phases of distinct behavior. In a first
period corresponding to a healthy filter, the Delta_P oscillates around a filter-dependent constant
value. At some point, however, the Delta_P shows an inflexion and starts a growth trajectory of
increasing slope until clogging.

The method presented is two-fold, combining a change point detection algorithm to identify the
inflexion with a RUL-estimation model during the second phase. The cumulative sum control chart
(CUSUM) algorithm is a widely used and robust algorithm to detect changes of average value in times
series. It relies on the computation of a likelihood-based score that tells how far observations are from
a reference model. This score moreover grows cumulatively when successive observations deviate
from the reference model. The first step of the proposed method is an adaptation of that procedure,
based on linear model likelihoods, to detect changes in slope when considering time windows of the
Delta_P. Using the inflexion point identified by the CUSUM algorithm, a polynomial/exponential curve
fit is then applied to the Delta_P curve to predict its future values. This allows a prediction of the RUL
which is defined as the remaining time left before the Delta_P reaches a pre-defined level considered
as filter clogging.

The developed method has the advantage to be online, not to rely on a nominal mean value for the
Delta_P, and to be computationally frugal as it relies only on linear models and polynomial fits. Those
characteristics make it a good candidate for an embarked system ringing an alarm several days before
a clogging occurs. It however depends on several parameters (reference slope, window size, score
threshold used for inflexion detection, degree of the polynomial fit) that must be optimized. Training
and test data obtained on bench engines at Liebherr Component Colmar are used to learn those
parameters and evaluate the resulting performance.
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1 INTRODUCTION 

Technological and electronic progress in modern 
sensors allow for the collection of vast amounts of 
data on mechanical and industrial equipment, 
particularly time series measuring their evolution 
over time. The definition of the maintenance 
schedule, which is crucial in the industry, is moving 
towards predictive maintenance, also known as 
condition-based monitoring (CBM) based on 
measurement of the industrial system. This 
approach is distinct from traditional preventive 
maintenance, where maintenance schedules are 
predefined, and components are replaced at fixed 
intervals. CBM avoids replacing functional 
components, thereby reducing costs, by 
establishing a dynamic schedule that evolves 
based on real-time system monitoring. A critical 
step in this process is the estimation of the 
remaining useful life of a component, considering 
the actual system usage, i.e., the time until its 
failure. It's also important to address the question 
of who is responsible if a component fails despite 
being declared valid by the monitoring system. 

Figure 1 Predictive maintenance 

The most commonly found approaches in the 
literature to design predictive maintenance models 
are physic-based methods, data-driven methods 
(statistical, machine learning, deep learning) or 
hybridisation of those approaches [1]. 

Physical methods are based on the physical 
modeling of the phenomena involved in the 
degradation of a system until failure, such as 
corrosion or fatigue. A mathematical model is used 
to simulate the degradation of the system under 
study and allows for the prediction of the 
Remaining Useful Life (RUL) [2]. Physical based 
methods need a strong physical and mechanical 
knowledge of the studied system. These methods 
have the advantage of being tunable in case of 
hardware changes, unlike statistical approaches. In 
particular, [3] proposes a physics-based approach 
to model the filter clogging phenomena, which will 
be used as a reference to build the models used in 
the present article. [4] presents a framework that 
combines physics-based models with degradation 

curves to simulate and predict the behavior and the 
RUL of industrial robots. Using the Digital Twin 
concept, it provides real-time alignment between 
simulated and actual system behaviors. 

Data-driven methods include approaches that rely 
on stochastic models or statistical analysis to 
develop fault detection models that do not directly 
mimic the underlying physics. These methods may 
include statistical algorithms like in [5] where 
unsupervised learning and Monte Carlo simulations 
are used to mimic the degradation process and 
perform fault detection on real devices from the 
automobile production. Another example can be 
found in [6] with an application of evolving fuzzy 
models for semiconductor health management. In  
[7], statistical algorithms based on the Gaussian 
distribution are used combined with neural network 
to diagnose battery fault. 

Data-driven method also includes machine learning 
and deep learning algorithms, which have been 
extensively used by the Prediction and Health 
Management community to develop predictive 
maintenance strategies. Such methods, enable 
analysis without the need for physical or 
mechanical knowledge of the studied system. In 
recent years, numerous articles have 
demonstrated the effectiveness of those methods 
for RUL prediction. For instance, multiple linear 
regression durability models were used to predict 
the fatigue life of automotive coil in [8]. In [9] SVM 
classifiers allow for fault detection in vehicle 
suspensions. The data being primarily time series, 
the developed methods focus on architectures 
commonly used for sequential data processing. 
Recurrent Neural Networks (RNNs), such as Long-
Short-Term-Memory (LSTM) networks [10], 
Convolutional Neural Networks (CNNs) [11], and 
more recently, Transformers [12], which have been 
adapted from the original Transformer architecture  
[13] to handle time series, are popular methods for 
performing Remaining Useful Life (RUL) 
predictions. 

The estimation of the RUL of clogged filters is an 
area of research within predictive maintenance, 
particularly for filtration systems in various 
industrial applications. Several studies have 
focused on the modeling and prediction of filter 
clogging, exploring different methodological 
approaches. For instance, in [14] an experimental 
setup to collect data on filter clogging mechanisms 
has been developed, providing a foundational basis 
for degradation predictions. In [15] a state-based 
model analyzes phase transitions in clogging and 
estimates RUL with increased accuracy. In a 
different context, [16] applied a Gaussian Process 
Regression model to predict the RUL of air filters, 
comparing it to neural networks to demonstrate the 
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effectiveness of this approach in handling small 
datasets. Additionally, [17] proposed a data-driven 
approach for liquid filtration systems, where they 
developed a health index to predict filter RUL. 
Lastly, in [18] the use of machine learning, 
particularly neural networks, to predict filter 
clogging in maritime systems is investigated, 
illustrating the potential of these techniques for filter 
monitoring in real-world scenarios. These works 
underscore the importance of integrating advanced 
techniques to enhance the accuracy of filter RUL 
estimations and ensure optimal maintenance of 
filtration systems. 

2 INDUSTRIAL CONTEXT AND 
PROBLEMATIC 

2.1 Industrial Context 

The present paper focuses on predictive 
maintenance applied to engine oil filters of heavy-
duty engines produced by Liebherr Components 
Colmar (COC). Liebherr is an equipment 
manufacturer comprising over 150 companies, 
organized into various divisions such as 
earthmoving, mining, household appliances, 
engine components, and more. COC factory is 
specialized in producing high-power diesel engines 
(> 1 MW). The engines produced by Liebherr have 
various applications from genset and mining trucks 
to mining excavators and rail applications. 

Over the lifespan of an engine, approximately fifty 
oil filter replacements are performed, leading to 
maintenance costs. The study targets the genset 
application, with a particular emphasis on the 
twelve-cylinder displacement configuration 
because of the data availability. The primary 
objective is to estimate the Remaining Useful Life 
(RUL) of the engine filters. 

Figure 2 D9812 Liebherr diesel engine 

Liebherr is investigating the possibility of estimating 
Remaining Useful Life (RUL) for their components. 
Starting with oil filters is an initial focus for 
developing and testing these predictive 
maintenance algorithms as their lifetime is 

dependent on the engine's operating conditions. 
The goal is to maintain the integrity and reliability of 
the machines by accurately estimating the RUL of 
components. Liebherr aims to ensure that their 
equipment continues to operate smoothly and 
efficiently, preventing unexpected breakdowns and 
optimizing maintenance schedules. 

2.2 Problematic: RUL estimation of oil filters 

Liebherr’s oil filters are cartridge filters, which are a 
type of filtration system widely used in industrial 
and mechanical applications. These filters consist 
of a cylindrical housing containing a pleated filter 
element made of accordion-folded filter media like 
in Figure 3. 

 

Figure 3 shows the pleated structure increases the 
surface area, enhancing filtration efficiency while 
maintaining a compact design. 

Figure 4 Oil filters connected to the engine 

On Liebherr diesel engines, multiple oil filters are 
arranged in series like in Figure 4 and their number 
depends on the engine displacement. 

The primary function of cartridge filters is to remove 
contaminants from fluids, such as oil, fuel, or 
hydraulic fluids, ensuring the longevity and 
performance of the machinery. Their design allows 
for easy replacement and maintenance, making 
them an ideal choice for applications requiring high-
performance filtration under varying operational 
conditions. 
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Figure 5 Example of ΔP(t) over the lifetime of a filter 
with the clogging threshold and the three clogging 
phases 

Oil filters remove contaminants and impurities from 
the oil to protect the engine. The notation Δ𝑃 refers 
to the pressure difference between the upstream 
and downstream sides of the filters. It is computed 
with two pressure sensors placed before and after 
the filter. The Δ𝑃 measure indicates the filter's state 
(healthy, partially clogged or clogged) and is used 
to estimate the RUL of the oil filters. A significant 
increase in Δ𝑃 suggests that the filter is clogged or 
nearing its capacity, while a low and constant Δ𝑃 
value usually indicates a clean and effective filter. 
The objective of the method developed in the 
present paper is to be able to anticipate the oil 
filters clogging i.e. to predict the filter end of life. 

The lifespan of a filter is characterized by three 
distinct filtration phases as shown in [3]. In the first 
phase, Δ𝑃 remains constant. This phase 
corresponds to the filtration of a clean filter, where 
most particles pass through the mesh without being 
retained. During the second phase, known as the 
linear or cake filtration phase, particles begin to 
accumulate in the filter. As a result, Δ𝑃 increases 
gradually and linearly over time. The third phase, 
which corresponds to the filter clogging stage, is 
marked by a sharp increase in Δ𝑃. This rapid rise is 
due to the reduction in the effective filtration surface 
area as the filter becomes more clogged. 

It is quite impossible to capture the very different 
behaviour of the three phases in a modelling of Δ𝑃 
as a single smooth time series. Preliminary work 
was made in that direction and gave very poor 
results in terms of RUL prediction. This is due to the 
fact that the difference in the Δ𝑃 slope is such 
between phases 2 and 3 that no precise RUL can 
be obtained without proper detection of the time on 
which the third phase begins. This moment will be 
denoted as the change point for Δ𝑃 

The present paper proposes a strategy that allows 
a RUL prediction once Δ𝑃 entered the third phase, 
which corresponds roughly to a couple of days 
before filter clogging. The method relies on the 

detection of the change point followed by a data-
driven modelling of Δ𝑃 in the third phase. 

3 CHANGE POINT DETECTION 
METHODS 

The objective of this section is to develop two 
methods to automatically monitor the change point 
detection in the time series of Δ𝑃. The first one is 
based on the evolution of the Δ𝑃 as a function of 
engine load and engine speed, while the second 
uses only the Δ𝑃 time series and an adaptation of 
the cumulative sum control chart (CUSUM) 
algorithm. 

3.1 Automatic labeling method 

The first proposed method relies on the idea that 
when the filter is functioning properly, the observed 
Δ𝑃 should be within a certain range depending on 
the current speed and load of the motor, and a 
significant deviation persisting over time indicates 
that the clogging phase has begun. The method 
therefore proceeds in two steps for any given filter. 

1. The linear regression of Δ𝑃 is computed as 
function of engine speed and load on the 
beginning of the filter lifetime which can be 
considered as a period where the filter is 
healthy. The variance of the residuals of 
the linear regression denoted 𝜎 is 
computed on this period. Δ𝑃 is expressed 
as: 

𝛥𝑃(𝑡) =  𝛼2 × 𝑠𝑝𝑒𝑒𝑑(𝑡) + 𝛼1 × 𝑙𝑜𝑎𝑑(𝑡) + 𝛼0           (1) 

2. The residuals of the regression (denoted 
𝜖(𝑡)), are then computed which allows to 

calculate the standardized residuals 
𝜖(𝑡)

𝜎
. 

The change point is considered to be reached 
when the standardized residuals exceed a 
specified threshold for a predefined number of 
consecutive time steps. The condition on the 
consecutive time steps has been set up to avoid 
false detection. When these conditions are met, 𝛥𝑃 
is considered to deviate significantly from its 
expected distribution when the filter is functioning 
in healthy state. 

3.2 CUSUM method 

The second change point detection method relies 
on the Cumulative Sum Control Chart (CUSUM) 
algorithm, which is a sequential analysis technique 
developed by Page in 1954 [19] to dynamically 
detect changes in the mean of time series [20]. An 
adaptation of the method is proposed to detect a 
change in the slope of Δ𝑃, indicating the beginning 
of the third phase without using additional data than 
Δ𝑃. 
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The first step of the proposed method consists in 
dividing the time in fixed windows 𝑊𝑖  dynamically, 
a new window being created whenever a sufficient 
time interval has been observed. Two models are 
then compared on each window, corresponding 
respectively to small or high slopes. To do so, let 
α𝑟𝑒𝑓  be a reference slope to be chosen by the user. 

The first model 𝑀0 corresponds to a null slope on 

𝑊𝑖. It assigns to 𝑊𝑖 the likelihood 𝐿0(𝑖) of the 
gaussian linear model with null slope 

𝑀0:     𝛥𝑃(𝑡)  =  𝛽 +  𝜖              (2) 

where 𝛽 is an intercept and 𝜖 a gaussian noise. 

Both 𝛽 and the variance of 𝜖 are estimated to 
compute the likelihood. 

The second model 𝑀1  corresponds to a slope on 
𝑊𝑖 at least equal to α𝑟𝑒𝑓. To compute a likelihood, 

the gaussian model  

𝑀1:      𝛥𝑃(𝑡)  =  𝛼 𝑡 +  𝛽 +  𝜖              (3) 

is adjusted to obtain an estimation of its 
parameters, and in particular an estimation  �̂�𝑖 of 
the slope on 𝑊𝑖. The considered likelihood 𝐿1(𝑖) is 
then computed from the model  

𝑀1:     𝛥𝑃(𝑡)  =  𝛼𝑖
∗𝑡 + 𝛽 +  𝜖                (4) 

with 𝛼𝑖
∗ fixed to 𝛼𝑖

∗ = max (α𝑟𝑒𝑓, �̂�𝑖) while 𝛽 and the 

variance of 𝜖 are estimated. 

Finally, 𝑆𝑖 is given the score  

𝑠𝑖 = 𝑙𝑜𝑔 (
𝐿1(𝑖)

𝐿0(𝑖)
)                (5) 

The rationale behind this score is that windows 
showing no significant increase in Δ𝑃 will have a 
higher likelihood in 𝑀0 compared to 𝑀1 and 
therefore a negative score. Conversely, windows 
with a slope close to or greater than α𝑟𝑒𝑓 will have 

a positive score, which large values when the 
increase is important and �̂�𝑖 is far from 0. 

 

Figure 6 Example of CUSUM Score for filter 20 with 
the two hypotheses 𝐻0 and 𝐻1. 

This behaviour is illustrated Figure 6 for a given 
filter. It shows an example of visualisation of the two 
models 𝑀0 and 𝑀1 on the time windows of a given 
filter, as well as their scores. 

As in the original CUSUM method, the cumulative 
sum of the scores is then considered, that is 

𝑆𝑖 = 𝑚𝑎𝑥(𝑆𝑖−1 + 𝑠𝑖 , 0)              (6) 

While the filter is in phases 1 or 2 where model 𝑀0 

is more likely, 𝐸(𝑠𝑖) < 0. Thus, Formula (4) ensures 
that the cumulative sum is pulled back to 0 
whenever it may be positive but never becomes 
negative. The expected behaviour during that 
phase is therefore a generally null sequence 𝑆𝑖 with 
some limited positive excursions. However, once 
the filter enters the third phase, several successive 
values of 𝑠𝑖 are positive and potentially large and 
the cumulative sum grows fast.  

A rule is defined to determine the change point by 
choosing the first time the cumulative sum 𝑆𝑖 

exceeds a predefined threshold ℎ. 

Figure 6 illustrates the cumulative sum behavior on 
a given filter. One can see that small variations are 
mainly smoothened out by the likelihood 
comparisons on time windows and that the small 
positive excursion around time 410 engine hours is 
pulled back to 0. However, after phase three has 
started, the cumulative sum rapidly becomes very 
large. 

3.3 Automatic labeling and CUSUM 
comparison 

Both methods aim to identify the transition to the 
clogging phase in the Δ𝑃 time series, they differ in 
their underlying principles, data requirements, and 
computational efficiency. 
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The advantage of automatic labeling is that it takes 
engine operating conditions (speed and injection) 
into account for breakpoint detection. However, this 
requires having the corresponding speed and 
injection data in addition to the Δ𝑃 signal. In 
contrast, the CUSUM method relies solely on the 
Δ𝑃 signal making it more applicable in scenarios 
where supplementary engine data is not available. 

The Automatic Labeling Method is robust against 
short-term fluctuations, as the regression-based 
approach accounts for variations in engine 
conditions. The CUSUM Method with the 
cumulative sum mechanism mitigates false alarms 
by smoothing out small variations and also makes 
the method robust against short-term fluctuations. 

Both methods were developed with the same 
objective, but the computation time for automatic 
labeling is reduced compared to the CUSUM 
method. The two methods were optimized based 
on the same breakpoints manually annotated, the 
results of the CUSUM method show better 
performance on the studied cases. 

While both methods aim to detect the transition to 
the clogging phase, the choice between them 
depends on data availability and computational 
constraints. 

4 EXPONENTIAL CONSTRAINT-BASED 
OPTIMIZATION 

This section focuses on the second part of the 
method presented in the article, that is the 
modelling Δ𝑃 and RUL estimation in the third 
phase. It is therefore assumed in this section that 
the change point 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 has been estimated by one 

of the methods of the previous section. 

Due to the sharp increase of Δ𝑃 during phase 3, the 
chosen model is the following: 

𝛥𝑃(𝑡) = 𝑓1(𝑡) = 𝑎 × 𝑒𝑥𝑝(𝑏𝑡2) + 𝑐             (7) 

where 𝑎, 𝑏 and 𝑐 must be estimated. 

The choice of such a functional model may seem 
arbitrary. However, an analysis was conducted to 
determine which functions best fit the data for 
accurate approximations. Several functions were 
investigated, including polynomials of degrees 4 to 
20 and exponential functions. Among these, the 
exponential function of 𝑡2 was found to provide the 
most accurate results on our available data. 

Modelling step: For each time 𝑡 after the change 

point, coefficients 𝑎, 𝑏 and 𝑐 are estimated using 
only the values of Δ𝑃 up to 𝑡 . To ensure that 𝑓1(𝑡) 
is increasing, this estimation problem is considered 

as a constrained optimization problem with 
constraints 𝑎 ≥  0 and 𝑏 ≥  0. To do so, the 
minimize function from the Python library SciPy 

[21] is used, with The BFGS (Broyden–Fletcher–
Goldfarb–Shanno) algorithm as selected 
optimisation method. The algorithm is an iterative 
method for solving unconstrained nonlinear 
optimization problems. 

Not all available points are used to reduce 
computation time and simplify deployment on an 
embedded controller. Points are selected from the 
beginning (older points) and end (more recent 
points) of the increasing phase to optimize 
prediction accuracy. 

The following parameters are optimized: 

1. 𝒄𝒏𝒐𝒓𝒎: The normalization constant, used to 
scale time and prevent numerical instability 
in the exponential term. The normalized 

time is calculated as 𝑡𝑛𝑜𝑟𝑚 =
𝑡

𝑐𝑛𝑜𝑟𝑚
. 

2. 𝒄𝒃𝒆𝒈𝒊𝒏: A constant ranging from 0 to 1 to 

determine the starting point for the 
estimation algorithm. It is defined as 

𝑡𝑏𝑒𝑔𝑖𝑛 = 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑐𝑏𝑒𝑔𝑖𝑛 ∗ (𝑡𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑡0) 

where 𝑡0 is the beginning of the oil filter 
lifetime. 

3. h_begin: the number of hours used to 
obtain the first points: the data from 𝑡𝑏𝑒𝑔𝑖𝑛 

to 𝑡𝑏𝑒𝑔𝑖𝑛 + ℎ𝑏𝑒𝑔𝑖𝑛is used for the estimation 

procedure.  

4. h_end: the number of hours used to obtain 
the last points: the data from 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡  −

 ℎ𝑒𝑛𝑑 to 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 is used for the estimation 

procedure. 

RUL Estimation Step: Once the coefficients are 
obtained, Δ𝑃 is predicted using the estimated 
coefficients. The time at which the predefined 
threshold is reached is calculated by projecting Δ𝑃. 
The estimated RUL is the time difference between 
the present time and the time when the threshold is 
reached. 

5 EXPERIMENTAL RESULTS ON 
LIEBHERR’  APPLI ATION 

5.1 Dataset presentation 

The dataset used to develop and validate this 
method is composed of six oil filters complete 
lifetime on Liebherr high powered diesel engines, 
originating from two engines of the same type 
operating on the test bench. Complete lifetime data 
of oil filters is only available on the test bench, as 
the Δ𝑃 value is monitored in real-time. This allows 
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for filter replacements at the most appropriate 
moments, specifically when the filter is clogged 
because the Δ𝑃 has exceeded the predefined 
threshold. The current study is therefore limited to 
the small sample of bench data for which the 
complete data until clogging is available. 

For field test engines, filters are currently replaced 
preventively according to a predefined 
maintenance schedule.  

The method presented has been developed and 
optimised on the six oil filters presented in table 2. 
The method may however be extended to other 
engine types and/or on other filter types (fuel filters, 
air filters…) as the clogging phenomenon is similar 
and also other component with similar end of life 
behaviour. 

Table 1 Available data 

Filter ID Engine Lifespan* 

20 1 612.2 

28 1 297.5 

32 1 191.2 

153 

201 

204 

1 

2 

2 

126.5 

434.6 

159 

*Lifespan in engine hours. 

The dataset contains the time series of Δ𝑃, for each 
filter, as well as the speed and load times series 
needed for the first change point detection method. 

Figure 7 𝛥𝑃 of the six oil filters available 

5.2 Choice of the parameters value 

The two change-point detection methods are 
optimized using the available data, with manually 
annotated change points serving as a reference for 
this optimization. To do so, a grid of threshold 
values is tested for each method, and the one 
achieving the best mean distance between 
predicted and annotated change points is selected. 

A leave-one-out procedure is used to avoid 
overfitting.  

Table 2 Parameter values for RUL estimation 

Parameter Value 

c_norm 750 

c_begin 0.2 

h_begin 2 hours 

h_end 40 hours 

A grid search is also conducted on the available 
data to optimize the parameters for the RUL 
estimation step. It tests all possible combinations 
within the parameter grid and selects the best ones, 
which are shown in Table 2.  

An initialisation of the coefficients 𝑎, 𝑏 and 𝑐 is also 
needed for the optimisation method used. 𝑐 is 

initialised as the mean of the Δ𝑃 on the first points, 
while 𝑎 and 𝑏 are randomly initialised taking values 

ranging respectively between [1−20; 1] and [1; 150]. 
Moreover, studies conducted on the initial 
conditions show that they have little impact on the 
estimated RUL. To reduce the randomness of the 
results, we compute the predictions for 10 random 
initialisations of 𝑎 and 𝑏 and take the average 
prediction of the 6 best-performing models among 
them. 

5.3 Results 

The results, i.e., the predictions of Δ𝑃 that allow the 
filter RUL estimation, depend significantly 
depending on the change point time used for 
constrained optimization. If the rupture time is too 
early in the filter's lifetime, the estimated RUL may 
be inconsistent as it is physically not possible 
because of the three clogging phases. Conversely, 
if it is too late, it will hinder for predictive 
maintenance of the filters. It is important to 
determine the appropriate rupture time. Both 
change point detection methods are therefore 
tested in combination with the RUL Estimation 
procedure and the corresponding results are 
presented. 

The results are shown on sixth oil filters for both 
methods. 

The colored lines shown in the lower graphs part  
5.3.1 and 5.3.2 represent the predictions of Δ𝑃 at 
specific time points, and the RMSE displayed in the 
figures are computed from the change point time. 

5.3.1 Results from the change point based 
on automatic labeling method 

In this section, the rupture time is determined using 
the automatic labelling method and is indicated by 
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a red vertical line in the figures. The RUL starts to 
be estimated once the rupture time is identified, 
which is why the figures do not display the entire 
lifetime of the filters, but only the data 
corresponding approximately to phase 3. The 
choice of 𝛼𝑟𝑒𝑓 (corresponding to the reference 

slope) was made using leave-one-out cross-
validation on a grid of possible values for the 
parameter, selecting the parameter that yielded the 
best average results on the filters from the test set. 

Figure 8 Results filter 20 

In Figure 8, the RUL is initially overestimated; 
however, the predictions become more precise 
over time. 

Figure 9 Results filter 28 

Accurate predictions are observed in the latter part 
of Figure 9. However, prior to stabilization, 
significant fluctuations in the RUL values are 
evident, consistent with observations from other 
filters. 

Figure 10 Results filter 32 

In Figure 10 the RUL is slightly overestimated at the 
outset; however, the predictions stabilize and 
closely align with the true RUL values as the filter 
progresses through its lifespan. 

Figure 11 results filter 153 

Figure 11 shows RUL predictions that closely align 
with the true values following an initial phase of 
fluctuation. 

Figure 12 Results filter 201 

In Figure 12, the predictions in the latter part of this 
figure are accurate. However, prior to stabilization, 
significant fluctuations in the RUL values are 
observed, consistent with trends identified in other 
filters. 
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Figure 13 Results filter 204 

In Figure 13 the RUL predictions exhibit a stable 
trend after an initial phase of overestimation. As the 
rupture point nears. 

5.3.2 Results from the change point based 
on the CUSUM method 

Figure 14 Results filter 20 

In Figure 14 the change point time is detected early 
in the data, with Δ𝑃 just beginning its sharp 
increase. 

Figure 15 Results filter 28 

In Figure 15 the estimated RUL stabilizes around 
the true RUL prior to the rupture point. These 
results indicate highly accurate predictions for the 
end of the oil filter's lifetime. 

Figure 16 Results filter 32 

In Figure 16 the RUL fluctuates initially but 
stabilizes effectively around the true RUL as the 
change point approaches. 

Figure 17 Results filter 153 

In Figure 17 the RUL is initially overestimated but 
converges closer to the true RUL before the 
change point. 

Figure 18 Results filter 201 

The initial estimations are consistent; however, 
they deviate from the true RUL before stabilizing 
around it as the change point approaches. 
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Figure 19 Results filter 204 

At the outset, the RUL is overestimated, but it 
subsequently stabilizes around the true RUL 
shortly before the rupture point. 

5.3.3 Results synthesis 

An analysis of the figures reveals that the 
predictions closely match the observed values 
when they are made after the change point. 
Additionally, it highlights that the change point is 
detected between 40 and 110 hours prior to 
clogging. This demonstrates the robustness of the 
proposed method, enabling clogging to be 
predicted with a precision of less than ten hours, 
typically within two to four days before it occurs. 

Regarding the comparison between change point 
detection methods, a general trend is that the 
automatic labeling detects change points earlier 
than the CUSUM method, aligning better with the 
goal of identifying the rupture point as soon as 
possible after the actual event.  

The RMSE values displayed in the Figures are 
computed from the change points, which differ 
depending on the method used. Therefore, it does 
not make sense to compare the performance of the 
two methods based on these RMSE values. To 
address this, we compare the RMSE values using 
the same start point. 

We denote 𝑡𝑐 as the rupture time obtained with 

CUSUM and 𝑡𝑙 as the rupture time obtained with 
automatic labeling and 𝑀𝑡𝑐 as the model that uses 
𝑡𝑐 as rupture time and 𝑀𝑡𝑙 as the model that uses 𝑡𝑙 
as rupture time. 

The rupture time obtained from CUSUM, or 
automatic labeling are respectively denoted 𝑡𝑐 and 
𝑡𝑙.as the model that uses 𝑡𝑐 or 𝑡𝑙 as rupture time are 

respectively denoted 𝑀𝑡𝑐 and𝑀𝑡𝑙. 

 

Table 3 RMSE computed from 𝑡𝑙 

ID filter 𝑀𝑡𝑐 𝑀𝑡𝑙 

Filter 20 8.5 14.7 

Filter 28 6.3 4.2 

Filter 32 7.1 4.4 

Filter 153 13.9 10.1 

Filter 201 68.5 15.1 

Filter 204 7.1 8.6 

Mean 18.6 9.5 

 

Apart from filter 201, the results obtained with the 
automatic labeling and CUSUM methods are 
comparable. For filter 201, using CUSUM, the 
predictions stabilize after the rupture point detected 
by the automatic labeling method, which explains 
the very high RMSE value. 

Table 4 RMSE computed from 𝑡𝑐 

  𝑀𝑡𝑐 𝑀𝑡𝑙 

Filter 20 8.6 10.6 

Filter 28 5.9 4.2 

Filter 32 5.2 3.5 

Filter 153 6.1 5.2 

Filter 201 11.3 6.2 

Filter 204 7.1 8.5 

Mean 7.4 6.4 

There are few differences between the RMSE 
calculated from the CUSUM rupture point. The 
results obtained using automatic labeling are 
however better, except for filter 204. Furthermore, 
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the average RMSE is also better with the automatic 
labeling method. 

The results presented in section 4 demonstrate 
that, beyond a certain point, the model predictions 
are accurate and enable the dynamic estimation of 
the filters’ RUL, allowing for predictive replacement 
schedule. 

6 CONCLUSIONS 

This study presents a comprehensive framework 
for predicting the RUL of engine filters through the 
combined use of two complementary 
methodologies: change-point detection and RUL 
estimation. The first method, change-point 
detection, plays a crucial role in identifying key 
moments when the system undergoes significant 
changes in behavior or performance (phase 3), 
which are indicative of the onset of degradation. By 
accurately detecting these rupture points, this 
approach enables the timely characterization of 
critical transitions in the lifecycle of engine filters, 
providing valuable insights into their performance 
under operational conditions. 

The second method, RUL estimation, further 
refines this analysis by quantifying the time 
remaining before the filter reaches the end of its 
useful life. The RUL estimations are based on 
constrained estimation methods. This predictive 
approach leverages the information gathered from 
change-point detection to make informed 
predictions about the degradation trajectory, 
enabling maintenance teams to plan interventions 
effectively. The accuracy of the RUL predictions, as 
reflected in the low RMSE values observed across 
multiple oil filters corresponding to different 
scenarios, underscores the robustness and 
reliability of the proposed framework and 
demonstrates a proof of concept for the hybrid 
approach presented. 

The method presented here combines breakpoint 
detection and constrained optimization to 
overcome the issue of poor prediction quality at the 
beginning of the filter's lifespan, since the Δ𝑃 signal 
contains little information during phases 1 and 2 
(constant and linear). This is made possible by 
breakpoint detection, which is usually not used for 
RUL estimation. 

The integration of these two methodologies offers 
a significant advantage in predictive maintenance. 
By combining the early warning capabilities of 
change-point detection with the actionable insights 
provided by RUL estimation, this framework 
ensures both the prevention of unexpected failures 
and the optimization of maintenance schedules. 
This dual-method approach reduces operational 

risks and costs, minimizes downtime, and optimise 
the lifespan of critical components. 

Future work could expand on these findings by 
incorporating advanced machine learning models 
to enhance the precision and adaptability of both 
methods. Additionally, integrating real-time sensor 
data and exploring other operational contexts could 
broaden the applicability of this framework across 
different industries. While this study focused on oil 
filters, the proposed approach could also be 
extended to other applications, such as engine 
filters or critical components in various mechanical 
and industrial systems. Ultimately, this hybrid 
methodology serves as a promising step toward the 
implementation of smarter, data-driven 
maintenance strategies that align with the 
principles of Industry 4.0. 
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