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ABSTRACT

Liquid ammonia is interesting for the maritime industry due to its higher volumetric energy density and
compatibility to existing large internal combustion engines (ICEs). Liquid ammonia injectors become
the key enabling technology for existing ICEs to adopt a carbon-neutral alternative fuel. Ammonia has
a high volatility, lower critical temperature, and higher critical pressure compared with most of the
conventional liquid fuels. In advanced injection strategies of large modern ICEs, liquid ammonia
sprays are prone to enter the vicinity of a critical point, the near metastable liquid region, and the
transitional phases, which exhibit highly non-linear and unsteady behavior, potentially triggering
combustion instabilities and engine failure.

The study incorporated both experimental tests on liquid ammonia sprays and machine learning-
assisted spray pattern identification. In the experimental study, we applied both shadowgraph and
Schlieren photography to examine the liquid ammonia spray patterns under different injection
pressures (30 MPa, 50 MPa, and 65 MPa), six ambient pressures (0.1 MPa, 0.2 MPa, 0.4 MPa, 0.6
MPa, 0.8 MPa, and 1.2 MPa), and three nozzle orifice diameters (0.12 mm, 0.32 mm, and 0.52 mm) to
obtain extensive data for further prediction analysis using machine learning. In the machine learning
aspect, we constructed Backpropagation (BP), Genetic Algorithm-Backpropagation (GA-BP), and
Particle Swarm Optimisation-Backpropagation (PSO-BP) neural networks based on liquid ammonia
spray data under different conditions. These neural networks were trained to predict the penetration
distance and other parameters of liquid ammonia spray across different phase change states (flash
boiling, non-flash boiling, and transitional phases), and their predictive performances were evaluated
and compared. Additionally, pseudo-color processing was used to analyse the flash boiling
phenomenon and its influencing factors in liquid ammonia spray, and the predictive performance of the
three neural network models under extrapolated experimental conditions was further examined.

The results indicate that the criterion of using superheat degree to determine the occurrence of flash
boiling is not sufficient in the case of liquid ammonia. The nozzle diameter significantly influences the
phase change in liquid ammonia spray, with the most pronounced effect. Among the neural networks,
the PSO-BP model demonstrated the best performance in predicting the penetration distance across
different phase change states. This study demonstrates the potential of BP neural networks, combined
with optimisation algorithms, to improve the accuracy and generalisability of liquid ammonia spray
penetration prediction models. By providing a detailed analysis of flash boiling conditions and their
influencing factors, this research contributes to the development of more reliable and generalisable
liquid ammonia spray models that can be applied to liquid ammonia injector development involving
complex spray dynamics.
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1 INTRODUCTION 

The International Maritime Organization (IMO) has 
implemented stringent policies to reduce 
greenhouse gas emissions, further emphasizing 
the need for research and development of 
alternative fuels to replace conventional fossil fuels 
[1, 2]. The alternative fuels-based energy solutions 
need also need meet the growing energy demand 
with high efficiency and reliability. Ammonia stands 
out as a promising green fuel due to its carbon-free 
combustion and minimal nitrogen oxide emissions 
when the air-fuel ratio and combustion is optimized 
[3]. It offers practical storage options, requiring 
either 9 bar at room temperature or atmospheric 
pressure at -33°C, compared to hydrogen's 
stringent conditions of -253°C or 700 bar [4]. 
Moreover, existing efficient and sustainable 
ammonia production methods further bolster its 
viability as a future engine fuel [3, 5, 6]. 

Many studies have investigated the use of 
ammonia mixed with other fuels in engine 
experiments. For example, Reiter et al. [7] 
conducted experiments on dual-fuel engines using 
liquid ammonia and diesel, demonstrating the 
feasibility of ammonia as a diesel engine fuel at 
various engine speeds and loads. The researchers 
injected liquid ammonia through the intake manifold 
while injecting diesel directly into the cylinder. The 
study showed that by controlling the energy ratio of 

ammonia in the mixed fuel ( ≤ 60%), NOx 

emissions could be reduced, and increasing the 
ammonia energy ratio could reduce CO2 
emissions. Li et al. [8] compared dual-fuel modes 
of ammonia and diesel in a two-stroke marine 
diesel engine under low-pressure injection dual-
fuel (LPDF) mode (intake manifold injection) and 
high-pressure injection dual-fuel (HPDF) mode 
(direct cylinder injection), finding that the ammonia 
substitution rate in HPDF mode could reach up to 
97%, approximately 1.2 times that of LPDF mode. 
Moreover, HPDF mode also helps to reduce 
greenhouse gas emissions. Zhang et al. [9] studied 
the application of liquid ammonia HPDF technology 
in heavy-duty diesel engines. The researchers 
developed new injection strategies to improve fuel 
mixing efficiency and alter the distribution of ignition 
points within the cylinder. Compared to LPDF, 
HPDF mode not only maintains low greenhouse 
gas emissions but also effectively addresses NOx 
emissions at high energy ratios of ammonia, 
although partial ammonia unburned might occur. 
These studies confirm the potential of liquid 
ammonia as an alternative engine fuel and highlight 
the research trend towards using in-cylinder direct 
injection strategies for ammonia. 

Studying the spray behavior of liquid ammonia is of 
significant importance for further optimizing internal 
combustion engines. During the injection process, 

liquid ammonia can undergo flash boiling under 
certain conditions. Flash boiling not only affects the 
spray morphology and droplet distribution but can 
also impact combustion efficiency and emission 
characteristics. The flash boiling phenomenon of 
liquid ammonia is influenced by various factors, 
including injection pressure, ambient temperature, 
nozzle geometry, and the physicochemical 
properties of ammonia. Many scholars have 
investigated the spray behavior of liquid ammonia 
from different perspectives. 

Pele et al. [10] utilized a GDI injector for the first 
time to explore the flash boiling state of liquid 
ammonia. Their findings indicated that ambient 
density and ambient temperature significantly 
influence the development process of liquid 
ammonia spray. Cheng et al. [11] primarily 
investigated the effects of injection pressure and 
ambient pressure on flash boiling liquid ammonia 
spray through Schlieren imaging experiments. The 
study revealed that increasing injection pressure 
extends the penetration and spray area, while 
increasing ambient pressure enhances air 
resistance, resulting in the opposite effect. 
Additionally, due to the phase change 
characteristics of ammonia, the development of 
sprays at the same pressure ratio differs 
significantly between different phases. Li et al. [12] 
demonstrated that the degree of superheat, 
Rp=0.25 and Rp=0.5 are critical points 
distinguishing the initial flash boiling stage, 
transition stage, and flare-flashing stage of 
superheated ammonia spray. From the initial flash 
boiling stage to the critical point, the development 
of the ammonia spray penetration resembles that 
of diesel, whereas during the transition and flare-
flashing stages, the penetration development 
varies due to bubble behavior. Fang et al. [13] also 
examined the performance of high-pressure liquid 
ammonia spray under flash and non-flash boiling 
conditions. They identified that under flash boiling 
conditions, the "spray resistance phenomenon" 
inhibits the spray tip velocity, and this phenomenon 
is highly correlated with Rp. Colson et al. [14] 
confirmed through experiments that Rp is a crucial 
parameter affecting the flash boiling state of liquid 
ammonia spray. Rp varies with changes in the 
nozzle length-to-diameter ratio (L/D). Moreover, 
increasing the nozzle diameter can induce more 
intense flash boiling phenomena. Liu et al. [15] 
showed through Schlieren imaging experiments 
that Rp=0.47 is the critical point distinguishing the 
flash boiling and transition stages of ammonia 
spray. The results indicated that as Rp increases, 
the penetration of ammonia spray in the flash 
boiling state also increases, while in the transition 
stage, the penetration decreases. Huang et al. [16] 
utilized large eddy simulation to study the effects of 
ambient pressure under flash boiling conditions 
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and both injection and ambient pressures under 
non-flash boiling conditions on the development of 
liquid ammonia spray. The simulation results were 
consistent with experimental results, confirming 
Cheng et al.'s findings [11], and comparing the 
radial expansion differences between flash and 
non-flash boiling sprays. He et al. [17] corroborated 
Cheng et al.'s conclusions [11] and further 
suggested that for non-flash boiling liquid ammonia 
spray, injection pressure does not significantly 
affect the development of spray penetration.  

It is noteworthy that the superheat degree (Rp) has 
been proven in numerous studies to be a crucial 
parameter for identifying and distinguishing the 
flash boiling modes of liquid ammonia sprays. By 
adjusting the Rp value, the flash boiling state of 
liquid ammonia sprays can be effectively 
controlled, thereby influencing the spray 
penetration and morphology development. 
However, as demonstrated in the study by Colson 
et al. [14], the Rp value is influenced by other 
factors and is not constant. This also explains why 
different Rp values were obtained in the literature 
[12] and [15].  

Despite the valuable insights provided by existing 
research into understanding the flash boiling state 
of liquid ammonia sprays, the extensive 
experimentation and analysis of the impact of each 
parameter are both time-consuming and complex. 
To more efficiently identify the spray patterns under 
different non-flash boiling and flash-boiling modes 
in highly volatile fuel sprays and predict relevant 
parameters, machine learning methods hold 
significant potential. Several studies have 
demonstrated the great prospects of machine 
learning in the field of volatile fuel sprays. Chang et 
al. [18] used three decision tree algorithms 
optimized by Tree-structured Parzen Estimator 
(TPE): Random Forest (RF), Gradient Boosting 
Regression Tree (GBRT), and Extreme Gradient 
Boosting (XGB) to predict and analyze the flash 
boiling spray characteristics of gasoline, with a 
particular focus on the prediction of spray tip 
penetration (STP) and downstream spray angle 
(SAdown). Results showed that the TPE-GBRT 
model had the highest accuracy in predicting STP, 
while the TPE-XGB model performed best in 
predicting SAdown. Hwang et al. [19] used a 
multilayer feedforward artificial neural network 
(ANN) to predict and analyze the spray 
characteristics of nine volatile fuels, including 
gasoline, under different flash boiling conditions, 
finding that the ANN model had high accuracy in 
predicting liquid penetration length and liquid 
volume fraction (LVF), especially under flash 
boiling conditions, surpassing existing 
computational fluid dynamics (CFD) models in 
prediction accuracy. Jeyaseelan et al. [20] applied 

a multilayer ANN algorithm to predict and analyze 
the spray angle and penetration length of 
cyclopentane under subcritical and trans-critical 
conditions. The study showed that the ANN model 
could accurately predict the spray characteristics of 
cyclopentane under different phase change 
conditions, performing exceptionally well under 
trans-critical conditions. Koukouvinis et al. [21] 
used an optimized ANN to predict and analyze the 
trans-critical spray characteristics of ECN Spray-A, 
with results showing that the ANN model had near-
zero prediction errors for thermodynamic properties 
at high pressure (greater than 1 bar) and 
demonstrated high accuracy in predicting the 
temporal history of spray penetration length and 
spray distribution. Zhao et al. [22] employed a 
residual network (ResNet) and an optimized 
decision tree classifier (DTC) to identify and predict 
spray collapse modes for multi-component fuel 
mixtures. The study indicated that the ResNet 
model achieved over 99% accuracy in classifying 
spray collapse states, and the DTC model, 
combined with the modified superheat index (Rp), 
showed high precision in predicting spray collapse 
states.  

These studies highlight the strong capability of 
machine learning in predicting parameters of 
volatile fuel sprays. The primary research focuses 
on using decision tree algorithms (such as Random 
Forest, Gradient Boosting Regression Tree, and 
Extreme Gradient Boosting) and ANN to predict 
parameters like spray tip penetration, spray angle, 
liquid penetration length, and liquid volume fraction. 
Additionally, deep learning models like ResNet 
have shown excellent performance in identifying 
spray collapse modes.  

Research on liquid ammonia sprays is crucial for 
the development of HPDF engines. While existing 
spray experimental studies provide valuable data, 
they still fall short in terms of efficiency to support 
fast investigation and prototyping of new liquid 
ammonia injectors. Machine learning-assisted 
parameter prediction and pattern recognition can 
significantly improve this process's efficiency and 
accuracy. However, machine learning algorithms 
have not been widely applied to liquid ammonia 
spray research, representing a clear research gap. 
Although the superheat degree (Rp) can be used to 
identify and distinguish the flash boiling state of 
liquid ammonia, predicting the penetration of liquid 
ammonia directly through other input parameters 
(such as injection pressure, ambient pressure, and 
fuel temperature) is more comprehensive while 
using machine learning methods.  

This study, based on experimental data from a 
previous work on liquid ammonia spray study, uses 
three neural networks—BP, GA-BP, and PSO-
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BP—to predict the penetration of liquid ammonia 
under different non-flash boiling and flash-boiling 
states. Furthermore, the study attempts predictions 
for extrapolated experimental conditions (such as 
prediction of spray penetration under extreme high 
pressure which was not in the training dataset). 
This research aims to promote the application of 
liquid ammonia as a clean fuel in engine technology 
and provide a new perspective for predicting 
complex volatile fuel spray behaviors using 
machine learning techniques. 

2 METHODOLOGY  

2.1 The experimental rig for macroscopic 
spray visualization 

 
Figure 1. The schematic diagram of DBI system. 

 
Figure 2. Diesel injector used in the experiment. 

Figure 1 shows a schematic diagram of the entire 
experimental setup and the optical path 
arrangement system, which does not depict the 
actual layout of the experimental apparatus. Figure 
2 shows the injector used in the liquid ammonia 
experiments, which is a diesel injector 
manufactured by Liaoning Xinfeng in China. The 
experimental setup mainly comprises a Diffuse 
Back Illumination (DBI) optical system, a high-
pressure constant volume vessel (CVV), a control 
system, and a liquid ammonia injection system. 
The CVV features a window diameter of 80 mm, 
with its internal pressure supplied by a high-
pressure nitrogen gas cylinder. A Fastcam SA-Z 
CMOS high-speed camera was employed in the 
experiments. The camera's recording resolution 
was set at 768 × 368 pixels, achieving a frame rate 
of 60,000 frames per second (fps) and a pixel scale 
ratio of 9.6 pixels/mm. 

2.2 Fuel and experimental conditions  

Liquid ammonia’s density and viscosity vary with 
temperature and pressure are depicted in Figure 3. 
The experimental conditions encompassed a range 

of injection pressures, ambient pressures, and 
nozzle diameters. Specifically, there were three 
injection pressures (30 MPa, 50 MPa, and 65 
MPa), six ambient pressures (0.1 MPa, 0.2 MPa, 
0.4 MPa, 0.6 MPa, 0.8 MPa, and 1.2 MPa), and 
three nozzle orifice diameters (0.12 mm, 0.32 mm, 
and 0.52 mm) tested.   

0 20 40 60 80 100 120 140 160 180 200
560

580

600

620

640

660

680

700

720

740

0 20 40 60 80 100 120 140 160 180 200
560

580

600

620

640

660

680

700

720

740

0 20 40 60 80 100 120 140 160 180 200
560

580

600

620

640

660

680

700

720

740

0 20 40 60 80 100 120 140 160 180 200
560

580

600

620

640

660

680

700

720

740

0 20 40 60 80 100 120 140 160 180 200
560

580

600

620

640

660

680

700

720

740

D
en

si
ty

 o
f 

A
m

m
o

n
ia

 (
k

g
/m

3
)

Injection Pressure (MPa)

 0℃
 25℃
 40℃

 -40℃
 -20℃

 

260 280 300 320 340 360 380 400

100

120

140

160

180

200

260 280 300 320 340 360 380 400

100

120

140

160

180

200

260 280 300 320 340 360 380 400

100

120

140

160

180

200

Temperature (K)

 50 MPa

V
is

co
si

ty
 o

f 
A

m
m

o
n

ia
 (

u
P

a
·s

)

 75 MPa

 30 MPa

 

Figure 3. Density and viscosity of liquid ammonia 
as a function of temperature and pressure. 

Table 1. Experimental conditions 
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Only the nozzle with a 0.32 mm orifice was 
subjected to all ambient pressure conditions during 
the experiments. Both the ambient temperature 
within the CVV and the fuel temperature were 
maintained at 18 °C throughout the experiments. 
All experimental conditions are detailed in Table 1. 
Each condition was repeated five times in the 
experimental study. 

2.3 Image processing  

The spray penetration for liquid ammonia spray is 
based on binary images obtained through image 
processing. The spray penetration is defined as the 
maximum pixel distance from the nozzle exit to the 
spray tip (Figure 4). 

 

Figure 4. Density and viscosity of liquid ammonia 
as a function of temperature and pressure. 

The selective raw spray images are provided in 
Appendix, Figure A1. The figure included the spray 
images under the conditions which were not 
presented in the existing literature [23]. 

2.4 BP neural networks for spray 
penetration prediction 

Artificial Neural Networks (ANNs) represent a 
pivotal class within machine learning, capable of 
learning and improving from input "experiences" to 
become instrumental in data classification and 
prediction tasks. In this paper, BP neural network 
and its optimisation methods using different 
algorithms will be used for liquid ammonia spray 
penetration prediction. In Figure 5, it shows that the 
BP neural network, a variant of the feedforward 
neural network, employs the backpropagation 
algorithm to calculate the discrepancy between the 
network's output and the target output. This 
discrepancy is then propagated backwards through 
the network, allowing for the computation of each 
weight’s (𝑤𝑖𝑗) and bias’s (𝑎𝑗 and 𝑏𝑘) contribution to 

the error and subsequently deriving gradients for 
each parameter. These gradients are used to 
update weights and biases via gradient descent, 
thereby refining the network's output to align with 
the target output more closely [24-27].  

However, BP neural network does not prescribe a 
specific strategy for updating weights, leading to 
potential issues such as local minima, slow 
convergence, or overfitting within backpropagation 
neural networks [28-30]. In this study, we used the 
basic BP neural network as a benchmarking 
method which is a single-hidden-layer, single-
output network structure. The training algorithm 
employed is the Levenberg-Marquardt (L-M) 
algorithm. To compare with the basic BP neural 
network, two optimisation algorithms, namely 
Genetic Algorithm (GA) and Particle Swarm 
Optimisation (PSO) were integrated to address the 
limitations of the benchmarking method and 
enhance the efficiency and effectiveness of the 
training process. The input nodes included the time 
of spray development, injection pressure, ambient 
pressure, ambient density, fuel temperature, fuel 
density, fuel viscosity, and nozzle diameter, totaling 
eight input nodes. There is only one output node, 
which corresponds to the spray penetration. A total 
of 1686 data sets were collected for this 
experiment. 70% of the data sets were used as the 
training set, while 30% were used as the validation 
set. The experimental conditions which were used 
for the prediction purpose were left outside both the 
training and validation sets unseen by the BP 
neural networks. 

 

Figure 5. The structure of BP neural network. 

2.4.1 Optimization algorithms 

Figure 6 illustrates the primary workflow of GA, 
which is based on the principles of natural selection 
and genetics. Each potential solution (i.e., the set 
of weights and biases in a neural network) is 
encoded as a chromosome. Through operations 
such as selection, crossover, and mutation, GA 
explores and identifies optimal solutions [31]. In this 
study, the GA operations include roulette wheel 
selection, single-point crossover, and real-number 
mutation. Roulette wheel selection probabilistically 
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selects individuals based on their fitness values, 
while single-point crossover and real-number 
mutation generate new solutions by exchanging 
gene segments and finely adjusting gene values, 
respectively. 

The flowchart of the PSO improved algorithm is 
depicted in Figure 7. PSO is grounded in swarm 
intelligence, mimics the social behaviors observed 
in flocks of birds or schools of fish. In PSO, each 
particle's position in the search space represents a 
potential solution, with its velocity dictating the 
direction and magnitude of exploration [32]. 
Particles adjust their positions and velocities based 
on their own best-known position and the global 
best position of the swarm, thereby progressively 
converging towards the optimal solution. 

In existing literature, GA was studied for predicting 
spray penetration of conventional fuels [33, 34]. 
PSO has not yet been applied to improve neural 
networks to predict spray penetration, although it 
has been employed in other engineering parameter 
prediction studies. Some researchers have utilized 
PSO for predictive modeling and compared its 
performance with GA, demonstrating that PSO 
exhibits similar or even superior predictive potential 
[35-37]. 

The training of the BP neural networks involved 
1,000 iterations in this study, with a learning rate 
set at 0.01 and a target minimum error of 1×10-5. 
For the GA optimization, genes were encoded 
using real numbers, with each gene position 
constrained within the range [-3, 3]. The initial 
population size consisted of 30 individuals, with a 
maximum iteration limit of 50. The crossover and 
mutation probabilities were set at 0.8 and 0.2, 
respectively. The fitness value F for each individual 
was determined using the Root Mean Square Error 
(RMSE), calculated as: 

𝐹 = 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑌𝑖)

2𝑛
𝑖=1             (1) 

where 𝑛 represents the number of samples, 𝑦𝑖  is 
the predicted output from the neural network 
model, and 𝑌𝑖 is the actual experimental data. 

For the PSO algorithm, the initial swarm size was 
set to 10 particles, with a maximum of 50 iterations. 
Each particle's position was confined within the 
range [-3, 3], and their velocities were limited to 
three times the range of each dimension. The 
cognitive and social learning factors were both 
fixed at 2, and the inertia weight was set at 0.9. The 
fitness value, like that in GA, was also evaluated 
using RMSE. 

 

Figure 6. Flowchart of the GA-BP neural network. 

2.4.2 Performance evaluation metrics 

To evaluate performance of three neural networks 
(namely the baseline BP, the GA-BP, and the PSO-
BP neural networks), a variety of metrics were 
used, including Coefficient of Determination (R2, 
called as R-squared), Mean Absolute Percentage 
Error (MAPE), Mean Absolute Error (MAE), and 
RMSE. Each of these metrics reflects different 
aspects of a model's predictive accuracy. 

R2 measures the degree of correlation between the 
model's predicted values and the actual values, 
with its value ranging between [0, 1]. The R2 value 
closer to 1 indicates stronger predictive power and 



 

CIMAC Congress 2025, Zürich                Paper No. 449             Page 8 

 

better fit of the model. The calculation formula for 
R2 is: 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑌𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖−�̅�)
2𝑛

𝑖=1

                      (4) 

where, �̅�  is the mean of the actual values. 

MAPE is the average of the absolute differences 
between the predicted and actual values, 
expressed as a percentage of the actual values. 
MAPE is particularly sensitive to outliers. A high 
MAPE value may indicate that, despite a good R2 

value suggesting a good fit, there are separate 
predictions that significantly deviate from the actual 
scenarios, which is unacceptable in many practical 
applications. The calculation formula for MAPE is: 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖−𝑌𝑖|

|𝑦𝑖|
∗ 100%𝑛

𝑖=1           (5) 

MAE is the average of the absolute differences 
between the predicted and actual values, providing 
a measure of the average level of errors. 

 𝑀𝐴𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑌𝑖)

2𝑛
𝑖=1                       (6) 

Together with the fitness value, which is RMSE, 
four metrics are used in this study to compare 
different BP neural networks. 

2.4.3 Selection of hidden layer node number 

The selection of the number of nodes in the hidden 
layer of a neural network primarily involves two 
methods. The first method involves researchers 
presetting a range of node numbers and 
experimenting incrementally to determine the 
optimal number [38-40]. The second method 
employs empirical formulas derived from previous 
studies on hidden layer node selection [41, 42]. 
However, due to the influence of various factors 
such as the dimensionality of the input vector and 
the number of training examples, the optimal 
number of nodes obtained from the first method 
often lacks genericity [43, 44]. 

We discussed the various empirical formulas for 
hidden layer node selection methods including 
those proposed by Li et al. [45], Tamura and 
Tateishi [42], Xu and Chen [44], Shibata and Ikeda 
[43], and Hunter et al. [46] in a previous paper [47]. 
According to the previous study, Hunter et al.'s 
formula was chosen because it balances the trade-
off between model complexity and computational 
efficiency. Therefore, the number of hidden layer 
nodes is 9. 

 𝑁ℎ = 𝑁𝑖 + 1                                     (7) 

where, 𝑁ℎ  is the number of nodes in the hidden 
layer; 𝑁𝑖 is the number of inputs / dimensions of the 
input vector. 

 

Figure 7. Flowchart of the PSO-BP neural network. 

3 RESULTS AND DISCUSSION 

3.1 Evaluation of different BP Neural 
Networks 

3.1.1 Results of performance evaluation 
metrics 

To evaluate the predictive capabilities of various 
neural network models for liquid ammonia spray 
penetration, a total of 1,686 experimental data 
points from liquid ammonia spray tests were used 
to train the BP, GA-BP, and PSO-BP neural 
networks respectively, each neural network for 30 
times. Penetration data from a single experimental 
condition representative of three flash boiling 
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conditions were selected as the prediction set. For 
each trained model, key statistical metrics—
including R2, MAPE, RMSE, MAE, and execution 
time—were calculated and presented in Figure 8. 
Through the statistical analysis and comparison of 
these metrics, a comprehensive evaluation of three 
neural network models can be concluded. 

 

(a)  

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 8. Comparison of R², MAPE, RMSE, MAE, 
and Execution Time for BP, GA-BP, and PSO-BP 
Neural Networks for spray penetration prediction. 

In Figure 8(a), the overall R2 distribution of the 
PSO-BP neural network outperforms the other 
models across all stages, with all predicted R2 
values exceeding 0.5. This indicates that the PSO-
BP model demonstrates greater stability and 
robustness in capturing the variations in spray 
penetration. In contrast, the GA-BP and BP cases 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

 

 

C
o

u
n

t

R2

 BP

 GA-BP

 PSO-BP

BP GA-BP PSO-BP
0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

R
2

0 100 200 300 400 500 600
0

5

10

15

20

25

30

 

 

C
o
u

n
t

MAPE (%)

 BP

 GA-BP

 PSO-BP

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

 

 

C
o

u
n

t

RMSE

 BP

 GA-BP

 PSO-BP

0 20 40 60 80 100 120
0

5

10

15

20

25

30

 

 

C
o
u

n
t

MAE

 BP

 GA-BP

 PSO-BP

0 200 400 600 800
0

5

10

15

20

25

30

 

 

C
o
u

n
t

Time (s)

 BP

 GA-BP

 PSO-BP



 

CIMAC Congress 2025, Zürich                Paper No. 449             Page 10 

 

exhibit a broader R2 value distribution, reflecting 
their instability in handling the complexities of 
varying spray states. As shown in Figure 8 (b), in 
the high-accuracy range, the PSO-BP case shows 
a clear predictive advantage: 13.3% of its 
predictions fall within the R2 range above 0.99, 
significantly higher than the 6.7% for the GA-BP 
and 3.3% for the BP baseline case. This result 
suggests that the PSO-BP neural network achieves 
overall superior prediction performance. The global 
searching capability of the PSO algorithm in 
optimizing initial neural network weights likely 
enhances its ability to avoid local minima, thereby 
improving the model’s consistency and accuracy. 
Furthermore, the highest R2 value achieved by the 
PSO-BP model is 0.99643, higher than the 
maximum values of 0.99344 for the GA-BP model 
and 0.99187 for the BP model. 

Figure 8(c) illustrates the MAPE distribution for 30 
prediction outcomes across the three neural 
network models, where the majority of MAPE 
values (more than 66.7%) fall within the 0 to 50 
range. The PSO-BP model displays a concentrated 
distribution than the GA-BP. This concentration 
trend is likely influenced by two main factors: the 
impact of dataset segmentation and selection on 
model training and prediction accuracy, and 
differences in optimization strategies between the 
GA and PSO algorithms. The GA algorithm 
typically explores the solution space more quickly 
during the initial training stage, which may result in 
greater variations in outcomes. In contrast, the 
PSO algorithm demonstrates stronger global 
searching capabilities, leading to a significantly 
improved accuracy and consistency. Further 
analysis of Figures 8 (d) and (e) shows that the 
RMSE and MAE distributions closely align with the 
MAPE distribution, indicating consistent 
performance across multiple error metrics. This 
consistency is particularly pronounced in the PSO-
BP neural network. It can be concluded that the 
PSO-BP model maintains strong predictive stability 
across different evaluation metrics. 

The analysis of time efficiency in Figure 8 (f) shows 
that the BP neural network has the shortest training 
duration, typically completing within a few seconds, 
indicating a clear advantage in time efficiency. In 
contrast, the GA-BP model's training time generally 
stabilizes between 200 and 300 seconds, while the 
PSO-BP model exhibits the longest and most 
variable training times. This variability may be 
associated with the global optimization nature of 
the PSO algorithm, which requires longer iterative 
processes to achieve a global optimum, thereby 
increasing variability in training duration. 

Incorporating optimization algorithms such as PSO 
and GA, enhances the model’s capacity to detect 

and fit complex data patterns, with particularly 
notable improvements with the PSO-BP model. It 
consistently outperforms the BP and GA-BP 
models across all evaluation metrics, highlighting 
the effectiveness of global searching strategies in 
achieving higher predictive accuracy. However, the 
GA-BP model shows a relative deteriorated 
predictive performance, likely due to the increased 
non-linearity and complexity encountered due to a 
limited amount of data in the training set, although 
complicated physical phenomenon transition from 
non-flash to flash boiling of liquid ammonia sprays. 
It has relatively higher sensitivity to noise and 
outliers, which may be attributed to its reliance on 
diverse solution exploration and random search, 
which, while potentially beneficial for convergence, 
may also increase vulnerability to errors in noisy 
datasets. The standard BP model retains a clear 
advantage in time efficiency, despite lower overall 
accuracy. Together, these findings underscore the 
PSO-BP model’s suitability for applications 
requiring high predictive accuracy and robustness. 

3.1.2 Prediction results of liquid ammonia 
spray penetration 

Based on the evaluation metrics results in the 
previous section, the highest-performing neural 
networks (determined by the highest R2 value) 
were used for further analysis. The prediction 
results from the three selected models were 
subsequently compared with the experimental data 
from the prediction set. Notably, the experimental 
data in the prediction set, incorporated distinct 
spray conditions of liquid ammonia, encompassing 
flashing (Rp<0.25), non-flashing (Rp>1), and 
transitional phases (1>Rp>0.25). 
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(h) 

 

(i) 

Figure 9. Comparison between the prediction 
results and the experimental data in the prediction 
set (0.32mm nozzle dia., 0.4 MPa background 
pressure, 30 MPa injection pressure/ 0.32mm 
nozzle dia., 0.1 MPa background pressure, 50 MPa 
injection pressure/ 0.52mm nozzle dia., 0.1 MPa 
background pressure, 65 MPa injection pressure) 

Figure 9 (a-i) presents the predicted outcomes from 
the BP, GA-BP, and PSO-BP neural networks 
alongside the experimental results across various 
phase transition stages. In the non-flash boiling 
stage of liquid ammonia (0.32 mm-0.4 MPa-30 
MPa), the BP model’s prediction aligns with the 
experimental data during the initial and final stages 
of spray penetration; however, a deviation is 
observed during the middle segment of the spray 
development, indicating a limited ability to capture 
the complete penetration dynamics. The GA-BP 
model shows a close alignment with the 
experimental data and maintains high smoothness 
but ultimately shows linearity in some segments of 
the spray development, suggesting that the model 
lacks flexibility in capturing the more nuanced 
curvature of actual spray development. The PSO-
BP model demonstrates both high smoothness and 
adaptability, closely tracking the experimental 

curve across all stages and capturing the 
continuous changes in penetration with minimal 
deviation. This suggests the PSO-BP model’s 
robustness in handling steady, non-flashing spray 
behaviour. 

During the transitional phase of liquid ammonia 
(0.32 mm-0.1 MPa-50 MPa), the BP model’s 
prediction aligns well with experimental data in both 
values and trend, indicating a reasonable fit for this 
stage. The GA-BP model, while achieving a good 
fit during the middle stage of penetration, shows 
slight deviations in the initial and final stages, 
possibly due to its higher sensitivity to changing 
phase dynamics. The PSO-BP model, however, 
continues to demonstrate strong accuracy and 
smoothness, with its prediction curve closely 
aligning with the experimental data throughout the 
phase, underscoring its ability to adapt effectively 
to transitional phase changes. 

In the flash boiling case of liquid ammonia (0.52 
mm-0.1 MPa-65 MPa), the BP model’s prediction 
displays a step-like pattern, which fails to capture 
the continuous spray development process 
observed in the experimental data and suggests 
limitations in predicting highly dynamic changes. 
The GA-BP model also shows significant deviation, 
especially in the final stage of spray penetration, 
possibly due to the increased non-linearity of the 
flash boiling spray. It is also possible that the limited 
number of flash-boiling experimental cases in the 
training set may also affect the accuracy of the 
spray penetration prediction. However, the PSO-
BP neural network, with a high R2 of 0.99643, 
demonstrates the best predictive performance 
across all stages, with a curve that remains smooth 
and highly consistent with the experimental data. 
This high degree of accuracy highlights the PSO-
BP model’s superior adaptability in capturing the 
complex, rapid transitions characteristic of flash 
boiling in liquid ammonia sprays. 

Overall, the analysis shows that the PSO-BP model 
consistently delivers the most accurate and smooth 
predictions across non-flashing, transitional, and 
flash boiling stages, indicating its robustness in 
handling varying phase conditions. The BP and 
GA-BP neural networks, while effective in certain 
experimental cases, show limitations in fully 
capturing the complex transitions, particularly in 
highly dynamic phases like flash boiling. 

3.2 Prediction of extrapolated experimental 
conditions 

One important capability of neural networks, which 
is to achieve high accuracy of predicting 
extrapolated cases, is highly desired. For instance, 
the current liquid ammonia fuel supply system is 
limited to the highest pressure of 65 MPa, however, 
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it is important to understand the spray behavior at 
a higher injection pressure, more than 65 MPa. In 
this section, we regrouped the training, validation 
and prediction sets, and put all the cases of the 
injection pressure 65 MPa into the unseen 
prediction set. This will test three neural networks 
which one could have the best predictive 
performance for the extrapolated experimental 
conditions. If one of these models could reliably 
forecast spray penetrations in the extrapolated 
conditions in the prediction set, it potentially 
provides a practical solution to minimize the need 
for exhaustive physical spray experiments under 
extreme scenarios, such as very high injection 
pressures, significantly elevated ambient 
pressures and temperatures. This approach could 
significantly enhance experimental efficiency and 
reduce the costs associated with physical testing. 

To accomplish this, the three datasets were 
restructured: data from conditions 0.32 mm-0.1 
MPa-65 MPa and 0.32 mm-1.2 MPa-65 MPa were 
allocated to the prediction set, while the remaining 
data were divided into training and validation sets 
with a 7:3 ratio. 

Figure 10 (a-f) illustrates the variations in prediction 
accuracy among the BP, GA-BP, and PSO-BP 
neural networks when applied to extrapolated 
experimental conditions. As shown in Figure 10 (a), 
an overall assessment of R2 values across the 30 
predictions shows that the BP model demonstrates 
relatively high stability, with 80% of its outcomes 
within the 0.9 to 1.0 range. The GA-BP model 
follows, achieving this range in 70% of its 
predictions, suggesting moderate consistency. In 
contrast, the PSO-BP model shows the least 
stability, with only about 50% of its predictions 
falling within this range, while the remaining results 
are more evenly distributed across the [0, 0.9] 
interval. This dispersion indicates that the PSO-BP 
model may struggle to maintain high prediction 
accuracy consistently under extrapolated 
conditions, which could be attributed to the 
increased complexity of modeling beyond the 
training data range. 

3.2.1 Performance comparison of the three 
neural networks 
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(d) 

 

(e) 

 

(f) 

Figure 10. Comparison of R², MAPE, RMSE, 
MAE, and Execution Time for BP, GA-BP, and 
PSO-BP Models for Extrapolated Conditions. 

When focusing on cases where R2 ≥ 0.99, as 
presented in Figure 10 (b), a clearer trend can be 
observed. The BP model meets this high-accuracy 
threshold in 6.7% of the cases, surpassing both the 
GA-BP and PSO-BP models, which achieve this 

threshold in only 3.3% of the cases. However, it is 
important to note that while the BP model maintains 
higher stability in reaching this threshold, its 
maximum R2 does not exceed 0.991, indicating a 
limitation in achieving the highest accuracy levels. 
In contrast, the PSO-BP model, despite lower 
stability overall, achieves the highest R2 of 0.99435, 
which is better than the GA-BP model's maximum 
result of 0.99102. 

As illustrated in Figure 10 (c), an examination of the 
MAPE distribution across the 30 predictive 
outcomes under extrapolated experimental 
conditions shows that the BP neural network 
predominantly achieves MAPE values within the 0-
50% range. This distribution indicates that the BP 
model, despite lacking optimization algorithms, has 
a lower tendency to produce extreme outliers 
compared to the GA-BP and PSO-BP models, 
whose MAPE values display greater variations. 
This suggests that while the BP model may yield 
more conservative predictions, it also exhibits more 
consistent accuracy, potentially due to its simpler 
structure, which may be less susceptible to 
divergence when extrapolating beyond the training 
data with the specific experimental parameter 
ranges. 

Further analysis of Figures 10 (d) and (e) shows 
that the RMSE and MAE distributions closely align 
with those of MAPE across the models, reinforcing 
the consistency of error profiles for each network. 
Both GA-BP and PSO-BP models, although 
achieving high accuracy in certain instances, 
exhibit wider error ranges in these metrics, 
indicating greater sensitivity to novel, untrained 
data points in the extrapolated experimental 
conditions. This heightened variation could reflect 
the more complex nature of these models, which—
despite algorithmic enhancements—may amplify 
deviations when faced with data outside the original 
training set. 

In terms of time efficiency, as shown in Figure 10 
(f), the standard BP model completes training 
within a remarkably short period, often under one 
second, underscoring its time efficiency advantage. 

The GA-BP model’s training duration remains 

relatively stable, generally ranging from 200 to 300 
seconds, suggesting moderate consistency in 
convergence. Conversely, the PSO-BP model 
demonstrates the longest and most variable 
training times, approximately two to three times 
longer than GA-BP. Although PSO is effective in 
quickly approaching the global optimum, its particle 
velocity update mechanism can lead to oscillations 
around the ultimate optimal solution, especially 
under extrapolated conditions where the search 
space may become more complex and non-linear. 
This oscillation delays convergence, highlighting a 
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trade-off between achieving high accuracy and 
maintaining time efficiency. Notably, the time 
efficiency performance of these three neural 
networks under extrapolated experimental 
conditions aligns with the trends observed in the 
last section. 

In summary, the analysis of the prediction 
performance of BP, GA-BP, and PSO-BP neural 
networks for the extrapolated experimental 
conditions shows the strengths and limitations of 
each model. The BP model demonstrates relatively 
high stability, with consistent R² and MAPE values 
that reduce the occurrence of extreme outliers even 
without optimisation algorithms. Although the basic 
BP neural network offers rapid and stable training, 
it falls short in achieving high-precision fitting. The 
integration of optimisation algorithms such as PSO 
and GA enhances the model’s capacity to search 
the solution space more thoroughly, thus improving 
the fitting accuracy for complex data (such as 
extrapolated experimental cases, with almost none 
knowledge from the training set). Nevertheless, 
these algorithms also introduce a higher risk of 
overfitting, as they tend to achieve the most precise 
solutions for training data, potentially generating 
noise rather than reasonable generic patterns 
applicable to physical experiments. Despite this 
risk, the addition of optimisation algorithms 
significantly increases the likelihood of achieving 
high-precision fitting. The GA-BP model shows 
improved accuracy with moderate consistency; 
however, its tendency for early convergence may 
limit adaptability under novel conditions. In 
contrast, while the PSO-BP model exhibits lower 
stability than the GA-BP neural network, it achieves 
the highest prediction accuracy demonstrating 
substantial potential. The PSO-BP model has the 
longest and most variable training time, due to the 
oscillatory convergence behaviour of its algorithm 
as it approaches the global optimum. Overall, the 
time efficiency trends of each model under 
extrapolated conditions align with the results 
observed in the last section, indicating that the 
processing duration of different neural network 
models is primarily determined by their optimisation 
algorithms and inherent model characteristics. 

3.2.2 Best predictive neural networks for 
extrapolated experimental conditions 
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(d) 

 

(e) 

 

(f) 

Figure 11. Best neural networks’ prediction results 
for liquid ammonia spray penetration in the 
extrapolated experimental conditions (all the cases 
under high injection pressure of 65 MPa). 

The highest-performing model from each neural 
network—BP (R² = 0.99075), GA-BP (R² = 
0.99102), and PSO-BP (R² = 0.99435)—was 
selected to compare prediction performance under 
extrapolated experimental conditions. Figures 11 
(a-f) present their time-varying predictions of liquid 
ammonia spray penetration in two extrapolated 
conditions. 

Under the condition of 0.32 mm-0.1 MPa-65 MPa, 
the BP model’s prediction closely matched the 
experimental data in the mid and late stages of the 
spray development but exhibited a clear deviation 
during the initial stages, where it struggled to 
capture the onset of penetration accurately. This 
limitation highlights BP’s potential inadequacy in 
responding to rapid initial phase changes. The GA-
BP model, despite a slightly higher R² value, 
displayed a similar trend, following the general 
pattern of spray development but missing subtle 
shifts in trajectory. The PSO-BP model, while not 
fully aligned with the experimental data, 
demonstrated superior adaptability especially the 
beginning stage. 

For the more challenging conditions of 0.32 mm-1.2 
MPa-65 MPa, all three models encountered 
difficulties. Although they captured the early-stage 
trends, none could reliably follow the turning points 
along the spray development curve, indicating the 
limitations of extrapolated predictions under the 
experimental conditions, unseen in the training set. 
The PSO-BP model’s performance was the most 
promising, as its curve aligned more consistently 
with the experimental trajectory compared to BP 
and GA-BP; however, it still struggled with finer 
details. Meanwhile, the GA-BP model exhibited 
distinct step-like changes throughout its 
predictions. This "stair-step" pattern in GA-BP’s 
predictions suggests sensitivity to fluctuations, 
potentially due to the GA algorithm's tendency to 
converge on local solutions rapidly, compromising 
prediction smoothness and accuracy in variable 
conditions. 

In summary, while the PSO-BP model shows 
promising adaptability in handling some 

extrapolated conditions, with a higher overall R², 

the results highlight the intrinsic challenges to 
predict extrapolated conditions beyond the training 
data. This difficulty is particularly evident in phase-
transition scenarios, where predictive models need 
heightened sensitivity to capture the complex, non-
linear behaviour of liquid ammonia spray across its 
distinct flash-boiling states. A potential solution to 
this challenge could be that increasing number of 
interpolated testing conditions. More even 
representation within the training dataset, in 
another word, balanced proportions of data for 
distinctive non-flash boiling, transitional and flash-
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boiling conditions, will assist to increase the 
models' ability to achieve enhanced accuracy and 
responsiveness in extrapolated experimental 
condition scenarios. 

4 CONCLUSIONS 

This study investigated using BP, GA-BP, and 
PSO-BP neural networks to develop predictive 
models for spray penetration of liquid ammonia 
injection. The results from three predictive models 
were examined using a group of performance 
evaluation metrics. Both interpolated and 
extrapolated experimental conditions were used to 
form the prediction dataset states to compare the 
effectiveness and accuracy of three models. The 
main conclusions are as follows: 

1. By introducing evaluation metrics such as R², 
MAPE, RMSE, MAE, and execution time and 
comparing them from multiple perspectives, it 
was found that while the baseline BP neural 
network can complete training quickly and 
stably, its accuracy is compromised compared 
to the other two models integrated with 
optimization algorithms. The incorporation of 
optimization algorithms, such as PSO and GA 
enhances BP neural network's ability to 
handle complex problems. For extrapolated 
experimental conditions (high pressure 
conditions), the PSO model outperforms the 
other models in its accuracy. 

2. Further comparison of all high-quality 
predictions (R² > 0.99) with experimental data 
showed that, although BP, GA-BP, and PSO-
BP neural networks can all produce models 
with R² > 0.99, their prediction consistency 
with experimental data varies significantly. 
Apart from predictions for extrapolated 
experimental conditions, the PSO-BP model 
demonstrates a high accuracy which could 
successfully predict experimental spray 
development curves. More even 
representation within the training dataset may 
provide adequate information for the PSO-BP 
model to increase its accuracy and stability for 
predictions of extrapolated conditions. 

5 DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

ANN: Artificial neural network 

BP: Backpropagation 

CFD: Computational fluid dynamics 

CVV: Constant-volume vessel 

DBI: Diffused back-illumination 

DTC: Decision tree classifier 

HPDF: high-pressure injection dual-fuel 

F: Fitness value 

fps: Frame per second 

GA: Genetic algorithm 

GBRT: Gradient Boosting Regression Tree 

L-M: Levenberg-Marquardt 

LPDF: Low-pressure injection dual-fuel 

LVF: Liquid volume fraction 

MAE: Mean absolute error 

MAPE: Mean absolute percentage error 

MSE: Mean squared error 

𝑵𝒉: The number of nodes in the hidden layer 

𝑵𝒊: The number of inputs / dimensions of the input 
vector 

PSO: Particle swarm optimisation 

R²: Coefficient of determination 

RF: Random forest 

Rp: The ratio of ambient pressure to saturation 
pressure 

RMSE: Root mean squared error 

Sadown: Downstream spray angle 

STP: Spray tip penetration 

TPE: Tree-structured parzen estimator 

XGB: Extreme gradient boosting 
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7 APPENDIX 

 

Figure A1. Images of liquid ammonia spray 
development over time under an ambient pressure 
of 0.1 MPa (nozzle diameter:0.12mm; injection 
pressure: 30MPa, 50MPa, 65MPa). 

 

Figure A2. Images of liquid ammonia spray 
development over time under an ambient pressure 
of 1.2 MPa (nozzle diameter:0.12mm; injection 
pressure: 30MPa, 50MPa, 65MPa). 
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