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ABSTRACT

The hybrid propulsion system (HPS), including various power sources, provides an effective solution
for energy saving and emission reduction of inland ships, which have flexible and changeable working
conditions. HPS has great advantages with its improved dynamic performance, lower fuel
consumption and emission; however, there are some challenges for system energy distribution and
power control due to the additional variables introduced into the energy conservation equation. To
optimize the energy management strategy (EMS) and develop the potential of the HPS, a novel
energy management strategy based on model predictive control (MPC) has been proposed for a
parallel hybrid propulsion system, which combines a natural gas engine, lithium-ion batteries, and
permanent magnet synchronous motor (PMSM). First, a speed predictor based on long short-time
memory (LSTM) is developed to forecast vessel velocity within a specified range, that is a precise
reference input of the EMS. The proposed strategy not only consider the short-term cost of natural gas
consumption and pollutant emissions, but also take into account the long-term cost for the capacity
degradation of lithium-ion batteries during navigation. Specifically, a tuning factor is introduced to
balance the trade-off between the performance of emission and battery capacity decay. Finally, the
effectiveness of the proposed strategy is verified by the simulation experiments and HIL test. The
results demonstrate that compared with the rule-based (RB) strategy, the MPC energy management
strategy proposed in this study can reduce fuel consumption by 0.71%, NOx and HC emissions by
15.18%, and the battery capacity degradation by 96.34% with the appropriate tuning factor. The
proposed EMS not only improves the system efficiency and reduce the fuel consumption but also
extend the service life of the battery system. The research confirms the beneficial effects of the HPS
on reducing fuel consumption and emissions for inland ships, and provides a new idea for the HPS
control and energy management.
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1 INTRODUCTION 

Increasing concerns about the global climate 
and fuel energy have made the transportation face 
higher challenges in improving energy efficiency 
and reducing emissions. Electrified propulsion 
systems offer a highly promising direction for 
energy conservation and emission reduction in the 
transportation sector, and have become a focal 
point in recent years. Inland waterway 
transportation vessels have also joined the trend, 
with several successful applications emerging. For 
instance, COSCO Shipping built a 700 TEU electric 
container ship in 2022, equipped with a battery 
capacity of 57600 kWh [1]. Another example is the 
“Three Gorges Hydrogen Boat No.1”, which utilizes 
a hybrid power system (HPS) combining a 500kW 
fuel cell and a lithium battery set of 1800 kWh, 
marking it as China’s first fuel cell powered vessel 
[2]. 

HPS is well adapted to the operating conditions 
of inland waterways vessels, owing to its efficiency, 
economic benefits, and power redundancy. 
Compared to traditional propulsion system, HPS 
offers significant advantages in handling frequent 
load demand fluctuations [3]. The integration of 
multiple energy sources offers significant 
advantages while increasing the complexity of 
system control. This complexity is mainly 
manifested in the expansion of the degrees of 
freedom for power allocation [4]. The energy 
management strategy (EMS) plays a pivotal role in 
this context, serving as the critical control 
mechanism for allocating instantaneous load 
demands among various power sources. The 
efficacy of the EMS directly determines the overall 
performance of the hybrid propulsion system, 
influencing key parameters such as energy 
efficiency, operational stability, and system 
reliability [5].  

Dynamic programming (DP) algorithm is one of 
the most commonly used energy management 
strategies, with its core principle based on the 
Bellman optimality principle. It is capable of 
effectively determining the optimal operating 
parameters of the system under specified 
navigation conditions. However, the traditional DP 
algorithm suffers from the problem of “dimensional 
catastrophe” as the number of discrete grids 
increases. Moreover, its dependence on complete 
navigation condition information significantly limits 
its real-time applicability. An enhanced DP 
algorithm was proposed in Ref. [6] that effectively 
eliminates the need for interpolation operations 
during backward recursion and forward solving by 
reconstructing the state transfer equation as a 
functional expression of state variables. This 
approach removes the accumulated errors 
associated with interpolation, thereby improving the 

accuracy of the globally optimal solution. 
Additionally, the algorithm incorporates the level 
set method to constrain the control input. 
Pontryagin's minimum principle (PMP) and 
equivalent consumption minimization strategy 
(ECMS), as two typical real-time strategies, can be 
computed in real-time. PMP and ECMS are 
essentially equivalent and both capable of 
providing near-optimal solutions, but they still rely 
on global navigation information. In Ref. [7] the 
computational resources and uncertainty of driving 
conditions are both considered. An adaptive PMP 
strategy based on two-stage optimization was 
proposed to address uncertainties driving 
conditions in real-world environments. The first 
stage uses the available driving condition to derive 
the optimal trajectory for using PMP method. The 
state trajectory and optimal costate are transmitted 
to the inner loop, where the A-PMP is applied. The 
state of energy (SOE) is fed back to controller. 
When a deviation occurs between SOE and its 
optimal trajectory reference, the predictive costate 
is adjusted. Finally, the robustness and 
effectiveness of the EMS are verified in real 
vehicles. However, such a closed-loop operation 
can be more conveniently implemented in another 
real-time optimization method known as Model 
predictive control (MPC).  

MPC processes the ability to handle 
optimization problems with multiple variables and 
constraints, and its inherent feedback control within 
the framework makes it particularly suitable for 
complex energy management in HPS. Several 
studies have already applied MPC to solve energy 
management problems of HPS. In Ref. [8] a 
variable weight decision model predictive control 
(VWDMPC) strategy was developed for HPS. This 
strategy achieves a balance between fuel 
consumption and dynamic performance. The 
optimization problem of energy management is 
simplified by clearly integrating the Karush-Kuhn-
Tucker (KKT) conditions and weight adjustment 
process. Finally, the weight range balancing the 
economic and dynamic performance was 
determined. An online EMS based on economic 
model predictive control (EMPC) scheme was 
presented in [9]. What the innovation of this 
strategy is that a multiple objective cost function is 
proposed. All the cost terms including fuel 
consumption and battery degradation are 
expressed in monetary terms. The strategy was 
validated on the electric bus in the end. 
Furthermore, in Ref. [10], a hierarchical distributed 
MPC control method was proposed for HPS. The 
upper-level controller is responsible for formulating 
the global energy allocation strategy. The lower-
level controller focuses on real-time optimization of 
individual subsystems. These studies demonstrate 
the role of MPC in improving energy efficiency.  
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The MPC repetitively solves optimal control 
problems with repeated update of state information. 
MPC calculates the optimal energy distribution 
within the prediction horizon. Therefore, the 
acquisition of reference trajectory is critically 
important, which is refer to future ship speed in 
energy management. There are various methods to 
predict future speed, such as, [11] utilized time 
series imaging technology for ship speed 
prediction. These ship speed prediction methods 
can be naturally integrated with the MPC strategy: 
the prediction module provides future speed 
information over a time horizon, and the MPC 
controller utilizes these predictions to compute the 
optimal energy allocation scheme. For instance, a 
strategy for fuel cell hybrid electric vehicle based on 
MPC-DP was proposed in [12], which incorporates 
a backpropagation (BP) neural network speed 
predictor. A bidirectional long short-term memory 
(Bi-LSTM) network was proposed for driving 
condition prediction in [13]. Similarly, an EMS 
combined working condition prediction was 
discussed in [14]. The results indicate that the MPC 
with Markov speed predictor has a better 
performance in economic efficiency than that 
without it. Therefore, integrating driving condition 
prediction with energy management is an effective 
approach to enhance energy efficiency.  

The energy management problem of the HPS is 
a nonlinear optimization problem with multiple 
objectives and multiple constraints. In this work, an 
MPC-based EMS is discussed, which not only 
considers the fuel economy, but also takes into 
account the pollutant emissions and battery 
degradation. Cause a single metric will lead to an 
extreme performance on the other aspects of HPS, 
whereas a multi-objective approach can improve 
the overall performance. Moreover, a ship 
prediction model based on LSTM is introduced into 
the energy management framework. A tuning factor 
is introduced in the EMS to adjust the HPS 
performance between emissions and battery 
degradation. Therefore, the proposed strategy can 
balance the pollutant emissions and battery 
degradation while ensuring the economic 
efficiency. The implementation of MPC controller is 
achieved using the ACADO toolbox, which uses a 
special iteration scheme to shorten the 
computation time in order to achieve real-time 
control. In the end, to verify the effectiveness of the 
proposed strategy, simulation and HIL testing are 
conducted. 

The structure of this paper is organized as 
follows. Section 2 presents the models of the 
considered system. Section 3 discusses the MPC-
based energy management strategy and the speed 
predictor. Simulation and Hardware-in-Loop (HIL) 

results are demonstrated in Section 4. Finally, the 
conclusions are provided in Section 5.  

2 System description and modelling 

This work focuses on an inland ship equipped 
with a gas-electric parallel HPS, which comprises a 
natural gas engine (NGE), a fixed pitch ratio 
propeller, a lithium-ion battery set, and a 
permanent magnet synchronous motor (PMSM). 
Figure 1 illustrates the hybrid system. The propeller 
can be driven by NGE or PMSM, or a combination 
of both. Such a hybrid system fully takes advantage 
of the clean and efficient features of NGE and 
battery energy storage, significantly improving the 
energy efficiency of the ship. PMSM can improve 
the acceleration performance of NGE and 
compensate for its limitations in dynamic response 
characteristics. Compared with series system, the 
parallel system has fewer energy transfer paths 
and higher propulsion efficiency. The specifications 
of the HPS are shown in Table 1. 

M

M

C

U

(1)

(2) (3) (4) (5)

(6)

(1) Natural Gas Engine

(2) Battery Pack 

(3) Motor Control Unit  

(4) Permanent magnet synchronous motor

(5) Gear box

(6) Propeller  

Figure 1. Gas-electric parallel HPS. 

Table 1. Specifications of HPS powertrain. 

Type Item Value Unit 

Natural gas 
engine 

Maximum power 243 kW 

Maximum torque 1600 Nm 

Maximum rotational speed 1850 rpm 

Battery pack - LiFePO4 - 

Capacity 200 Ah 

Nominal voltage 576 V 

PMSM Maximum power 100 kW 

Maximum torque 850 Nm 

Maximum rotational speed 2200 rpm 

Propeller P/D 1.1 - 

 Diameter 1.05 m 

 Blade area ratio 0.4 - 

Gearbox Gear ratio 2.63:1 - 
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2.1 Natural gas engine model 

A numerical model of the NGE is developed for 
energy management, incorporating gas 
consumption rate and pollutant emissions, 
specifically NOx and HC. Figures 2a and 2b depict 
the NGE gas consumption rate map and pollutant 
emission rate map, respectively. They are all 

expressed as a function of NGE speed engN  and 

torque engQ  as in Eqs. 1 and 2.  

= ( , )f eng engm f N Q               (1) 

= ( , )emis eng engm g N Q               (2) 

Figures 3a and 3b present the simulation errors 
of the numerical model for the gas consumption 
map and emission map, respectively. The errors 
generally range between 5% and 10%, with large 
deviations observed in certain low-load regions. 
However, the polynomial model is consistent with 
the original maps in terms of change patterns, and 
the EMS tries to avoid NGE operating in low-load 
regions where higher gas consumption and 
emission costs are incurred. Thus, the model is 
considered feasible.  

  

                  (a)                                   (b) 

Figure 2. (a) Gas consumption rate map, (b) 
NOx+HC emission map. 

  

                 (a)                                    (b) 

Figure 3. (a) Gas consumption error, (b) 
NOx+HC emission error. 

The dynamic behavior of the NGE speed can be 
derived from Eq. 3. 


= + −

30
( )

eng

mot eng load

eng

dN
Q Q Q

dt J
            (3) 

= /load prop gbQ Q i                (4) 

where, engJ  is the moment of inertia of NGE; gbi  is 

the gearbox reduction ratio. 
loadQ  is the propeller 

torque load propQ  transmitted to the powertrain 

through the gearbox. 

2.2 PMSM 

PMSM is driven by the lithium battery set. As a 
propulsion motor, the PMSM is characterized by 
high efficiency and fast dynamic response. The 
charging and discharging efficiency of the battery is 
considered in this work, which can be expressed as 
a function of the battery output power in Eq. 5 [15]. 

 

Figure 4. PMSM efficiency map. 

   = + +2

,0 ,1 ,2bat bat bat bat bat batP P              (5) 

where,  ,bat i , = 1,2,3i  is fitting coefficients; 
batP  is 

battery power. 

Consequently, the efficiencies of the PMSM and 
the battery are combined using Eq. 6 to more 
accurately simulate the system. The battery output 
power can be calculated by Eq. 7. Figure 5 shows 
the output power map of the battery. 

 


 


= 



, 0
( , )

1/ , 0

pmsm bat mot

t mot mot

pmsm bat mot

Q
N Q

Q
            (6) 

 =bat mot mot tP Q               (7) 

2.3 Battery model 

The energy storage battery is one of the 
important components of the propulsion system. To 
balance accuracy with computational efficiency, a 
Rint equivalent circuit model is established in this 
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work for simulating battery power and voltage 
dynamics. The battery open circuit voltage 
characteristics and internal resistance 
characteristics are presented in Figure 6, and the  

 

Figure 5. Battery output power map. 

 

Figure 6. Battery cell characteristics of open-circuit 
voltage and internal resistance 

state-of-charge (SOC) of the battery can be 
obtained by Eq. 8. 

= − 0
T

bat

ini

bat bat

P
SOC SOC dt

Q U
             (8) 

where, 
batQ  is the battery capacity; 

batU  is the 

terminal voltage. Battery degradation stems from 
electrochemical side reactions, including SEI 
growth and lithium loss, that persistently occur 
during normal operation. In this work, capacity 
reduction is adopted as the primary metric for 
assessing battery degradation. A semi-empirical 
model is employed to describe the battery life [16]. 

= −
( )

( ) ( ) za

loss h

T b

E c
Q P c exp A

R T
             (9) 

where, 
lossQ  is the percentage of battery capacity 

loss; c  is the current rate; 
hA  is the ampere-hour 

(Ah) throughput; z  is a constant parameter 

determined by experiment; 
TR  is the ideal gas 

constant; 
bT  is the battery temperature; ( )aE c  is 

the activation energy; ( )P c  is the pre-exponential 

factor; both ( )aE c  and ( )P c  are function of current 

rate. 

  = + +2

1 2 3( )P c c c             (10) 

= −( ) 31370E c c             (11) 

with  ,i i =1,2,3 and   constant parameters.  

Generally, the 
lossQ  reaches 20% signifies the 

end-of-life (EOL) for the battery, indicating that the 
battery should be retired from service [17]. The total 
Ah before EOL can be calculated using Eq. 12.  

=

−

1/

,

20
[ ]

( )
( ) ( )

z

h eol

a

A
E c

P c exp
RT

           (12) 

In this case, the battery degradation in discrete-

time domain  lossq  can be quantified by Eq. 13. 


 =

 ,2 3600

b

loss

h eol

I t
q

A
            (13) 

2.4 Propeller model 

The generation of propeller thrust and torque 
involves complex hydrodynamic processes. Fitting 
formulas and semi-empirical Eqs 14 and 15 are 

utilized to calculate thrust pT  and torque pQ  [18]. 

= 4 2( )p T pT K J D n             (14) 

= 5 2( )p Q pQ K J D n             (15) 

=
60

eng

p

gb

N
n

i
             (16) 

where, 
TK  and QK  are thrust coefficient and 

torque coefficient, respectively. They dependent on 

the advance ratio J  and are typically obtained 

through open-water test. Additionally   is water 

density; D is the propeller diameter; 
pn  is propeller 

rotation speed in r/s. 

2.5 Hull dynamics 

Eq. 17 calculates the ship’s speed. 
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= −
1

( )s ship shipV T R
m

            (17) 

where, 
sV  is the ship speed; m  is the ship mass; 

shipT  represents the thrust, considering thrust 

deduction caused by hull-propeller interaction; 

shipR  is the ship resistance, which is related to 
sV .  

= −(1 )ship pT T t              (18) 

= 2

ship r sR c V              (19) 

where, t  is thrust deduction factor; 
rc  is 

resistance coefficient.  

3 EMS and control 

This section discusses the establishment of a 
predictive energy management strategy based on 
MPC and a ship speed predictor. A multiple-
objectives cost function that consists of gas 
consumption, emissions and battery degradation is 
formulated for MPC. The primary tasks of the MPC 
controller are to track the NGE reference speed 
and determine the optimal energy distribution, 
while ensuring that the NGE and PMSM work within 
their respective operational limits. Also an LSTM 
model based ship speed predictor is developed to 
provide reference information for MPC controller. 
Figure 7 illustrates the energy management 
framework for HPS.  

MPC-based EMS

NGE

ShipPropeller

PMSM Battery

Gear box

Speed 

Predictor

Qeng

engN ,eng refQ ,mot refQ

mP

SOC

motQ

,eng refN

gbN

gbN

gbT

pn

pT

sV
 

Figure 7. HPS energy management framework.  

3.1 MPC-based EMS 

The primary objective of the EMS is to minimize 
the total cost of system operation. Therefore, the 
multiple-objective cost function in this work 
incorporates gas consumption, NOx and HC 
emissions, and battery degradation, which are 
calculated using Eqs 20, 21, and 22, respectively.  

= + bat
fc fc eqv

u

P
J m

H
            (20) 

where, eqv  is the equivalent factor; 
uH  is the 

lower heating value of natural gas. In addition, both 
emissions and battery degradation are scaled to 
gas consumption for comparison within the same 
magnitude.  

=
,

,

fc max

emis emis

emis max

m
J m

m
            (21) 

=
,

,

fc max

bat loss

loss max

m
J q

q
            (22) 

The energy management based on MPC is an 
optimal control problem (OCP) with an infinite 
number of optimization variables. In this work, the 
direct method is applied to transform such an OCP 
to a nonlinear program (NLP) problem [19]. Thus, 
the discretized cost function is given in Eq. 23.  

 

−

=

= − +

 − + +
 
 − +  



6

1
1 2

3 4

2

22

,

2 2
1

|| ( ) ( ) ||

|| ( ) ( ) || ( )

(1 ) ( ) ( )

u

u ref u w

N
eng eng ref w fc w

k
emis batw w

J SOC N SOC N

N k N k J k

J k J k

    (23) 

where, 
uN  is the control horizon which is 40 in this 

work; −
1

2

,|| ( ) ( ) ||eng eng ref wN k N k  represents the 

stage cost of NGE speed tracking error. The 
subsequent three terms correspond to the stage 
costs associated with gas consumption, NOx and 
HC emissions, and battery degradation, 
respectively. The parameter   is a tuning factor, 

which is adopted to balance the emissions against 
battery protection. The term  

−
6

2|| ( ) ( ) ||ref wSOC N SOC N  denotes the final cost of 

battery SOC variation, ensuring equality between 
initial and final SOC values. In the end, 

= 1 6iw ,i ,...,  represents the weighting factors for 

each component.  

In each control interval, the MPC solves such an 
NLP problem with constraints to obtain the control 

input that minimizes the specified cost J . 

−

 

 

 

 

 

,

, ,

, ,

,

, ,

( , , , )

. . . 1 9,2

0 ( )

( ) ( )

eng mot
eng eng mot

Q Q

min max

eng min eng eng max

mot min mot mot max

eng eng max eng

mot min mot mot mot max mot

min J N SOC Q Q

s t Eqs

SOC SOC SOC

N N N

N N N

Q Q N

Q N Q Q N

           (24) 
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The constraints include limitations on SOC and 
speed operation range. The torque constraints of 
NGE and PMSM are obtained from their external 
characteristics. 

To implement the MPC controller, a real-time 
iteration (RTI) scheme is adopted in this work [20]. 
Typically, the RTI is realized using a direct multiple 
shooting technology with sequential quadratic 
programming (SQP) [21]. In each control interval, 
the SQP performs only one iteration. As a result, 
the optimization problem does not iterate to 
convergence in each control cycle, but gradually 
converges through multiple control steps. The RTI 
carefully designs the preparation stage and 
feedback stage of the algorithm. In the preparation 
stage, the Gauss-Newton method is used to 
approximate the Hessian matrix. Once the system 
information is obtained, the feedback stage 
immediately calculates the solution of QP and 
outputs to the control plant. In this way, RTI can 
provide approximate optimal feedback control 
within a limited time, and approach the precise 
optimal solution as the iteration progresses. What’s 
more, the strategy is finally implemented through 
the ACADO toolkit [22]. 

3.2 Ship speed predictor 

The goal of energy management is to meet the 
needs of ship navigation while minimizing system 
costs. Under this condition, providing future speed 
information for the controller is extremely important 
for improving the efficiency of HPS. The ship’s 
speed typically changes over time, and the current 
speed is closely related to the speed and 
environmental conditions of the past period. 
Therefore, the ship speed data can be processed 
as time series. In Ref. [23], a long short-term 
memory (LSTM) network was proposed for driving 
condition prediction. Thus, in this work, an LSTM 
model is used to predict the ship’s future speed. 
The predicted results are then converted to engine 
speed by the propulsion system model, and input 
into the MPC controller to optimize the energy 
allocation of the HPS. 

forget

gate

input

gate

output

gate

tanh

tanh

tC

th

1th
−

tx

1tC
−

titC

1[ , ]t th x
−

tf

to

 

Figure 8. LSTM structure. 

Figure 8 presents the structure of LSTM. The 
forget gate indicates the degree to which the 
previous cell information needs to be forgotten. The 
input gate determines the current input information 
entering the cell. The new cell state is composed of 
the previous cell state controlled by the forget gate 
and the new information controlled by the input 
gate. The output gate extracts useful information 
from the current cell information. These gates are 
typically sigmoid activation functions. The 
parameter transfer process of LSTM can be 
represented as Eq. 25.  

1

1

1

1

1

( )

( )

( )

( )

( )

t ix t ih t i

t cx t ch t c

t fx t fh t f

t ox t oh t o

t t t t t

t t t

i w x w h b

C tanh w x w h b

f w x w h b

o w x w h b

C f C i C

h o tanh C







−

−

−

−

−

= + +


= + +
 = + +


= + +
 = • + •

 = •

           (25) 

where,   is activation function; w  and b  donate 

weight and bias respectively; 
ti , 

tf , 
to , 

tx , and 
tC  

represent the input gate, forget gate, output gate, 
data input and cell state at the current moment, 

respectively. Moreover, 
tC  and 

th  represent the 

hidden layer information.  

To train the speed predictor, real operational 
data of ships in the Yangtze River were collected. 
During the training process, Adam is used as the 
optimizer for deep learning. 80% of the dataset is 
used for training, and the remaining 20% for 
testing. The ship speed prediction results based on 
the LSTM method is shown in Figure 9. The results 
indicate that the predictions are relatively accurate 
and can meet the needs of energy management.  

 

Figure 9. Ship speed prediction result. 

4 Results and discussion 

The results of MPC-based EMS are presented 
and discussed in this section, and the effectiveness 
of the EMS has been further validated through HIL 
testing. The test conditions in [24] are utilized to 
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configure the simulation environment. The working 
conditions in this study were extracted by machine 
learning and contained different working 
characteristics of the ship, that can provide more 
comprehensive testing for HPS.  

4.1 Simulation results 

Firstly, a moderate value is set for neutral tuning 
factor. The results of MPC strategy with  =0.5 are 

presented in Figures 10 and 11. As a comparison, 
the results based on the DP strategy and the rule-
based (RB) strategy are shown together. The DP 
strategy also considers a multiple-objective cost 

function (1 )fc emis batJ J J + − +  as the optimal 

benchmark for comparison. The RB strategy 
establishes the energy management rules 
according to SOC thresholds, with the economy of 
HPS as the main consideration objective. 

 

Figure 10. (a) NGE speed tracking, (b) SOC 
trajectory. 

The results in Figure 10 indicate that all three 
control strategies satisfy the requirements for 
speed tracking and SOC maintenance. The final 
SOC values under different strategies are around 
65% with a deviation within 5%.  

In the configured working conditions, the period 
from 0 to 120s represents a low load region. During 
this stage, the ship’s power demand is relatively 
low. As a result, both the MPC and DP strategies 
generate higher PMSM torque to prevent the NGE 
from operating under a low-efficiency region. As the 
power demand rapidly increases during sharp 
acceleration phase from 120 to 190s, the MPC 
strategy gradually reduces the PMSM torque to 
coordinate the acceleration process of the NGE. At 
150s, the PMSM transitions to generating mode, 
and the NGE enters its high-efficiency zone. In 
contrast, under the DP strategy, the PMSM quickly 

switches to generating mode, driving the NGE into 
a high-load region to achieve better efficiency.  

During the subsequent deceleration and 
constant speed phases from 190 to 400s, the MPC 
and DP strategies generate distinct energy 
allocation paths. The PMSM remains in generating  

 

Figure 11. Torque distribution results under 
strategies, (a) torque of NGE, (b) torque of PMSM. 

mode under the MPC strategy, supplying electrical 
energy to the battery while coordinating the torque 
output of NGE based on changes in demand 
power. This is due to the constraint of battery SOC 
change in the MPC strategy. However, under the 
DP strategy, almost all required power is fulfilled by 
NGE, while the torque of PMSM only experiences 
slight fluctuations around 0. This is because 
meeting the demand power by NGE reduces the 
secondary conversion of energy, resulting in higher 
system efficiency. What’s more, the SOC under the 
DP strategy is relatively high at this time. In the 
similar working process between 400 and 900s, the 
opposite result occurs: under the MPC strategy, the 
NGE meets nearly all power demand, while in the 
DP strategy, the PMSM operates in generating 
mode to charge the battery. The torque distribution 
of the system under the RB strategy is relatively 
simple. In contrast, the torque distribution of the RB 
strategy is relatively straightforward. During the 
initial operation phase, the battery has sufficient 
energy, so the PMSM handles most of the load. 
When the ship's power demand increases 
significantly, the NGE is responsible for meeting 
the power demand. To ensure the NGE works 
along the predefined optimal operation curve, the 
PMSM either supplements the insufficient power or 
switches to generation mode to adjust the 
operating point of NGE. 
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In the power fluctuation phase from 900 to 
1700s, MPC converges to the same result as DP. 
In this case, the PMSM mainly plays a role in torque 
coordination. As the required power demand 
increases, the electromagnetic torque is reduced to 
assist the NGE in acceleration. Conversely, when 
the required demand decreases, PMSM switches 
to power generation mode, on the one hand to 
replenish battery energy to maintain the SOC within 
normal range, and on the other hand to adjust the 
working point of NGE to improve economic 
efficiency and reduce emissions.  

 

Figure 12. Results under three strategies. 

Figure 12 shows the results of three strategies. 
Compared to the optimal DP strategy, MPC only 
has a 0.919% higher gas consumption but a 
0.104% lower emission level. This difference is 
caused by the different working path of the NGE. In 
terms of battery degradation, MPC is 11.1% higher 
than DP. This phenomenon can be explained by 
Figure 13, which exhibits the operating points of the 
PMSM. The PMSM under MPC strategy operates 
more frequently in high-speed and high-load 
region, which leads to larger battery currents and 
consequently greater battery degradation. 
However, the MPC strategy achieves reductions of 
0.71% in gas consumption, 15.18% in emissions 

and 96.34% in battery degradation compared to the 
RB strategy. In summary, the EMS based on MPC 
strategy is capable of satisfying the energy 
management requirements of HPS.  

 

Figure 13. Battery output current. 

In some situations, HPS may pay more attention 
to certain performance aspects. For example, when 
entering emission-restricted zones such as ports, 
the HPS may prefer to reduce the pollutant 
emissions, while during normal operation the 
battery degradation and gas consumption may be 
more focused.  

Therefore, two additional simulation 
configurations,  =0.2 and  =0.8, are set up in 

this work, respectively representing emission 
optimization priority and battery degradation 
optimization priority. In order to compare the results 
clearly, the operating points of NGE and PMSM are 
placed on the gas consumption rate map, NOx and 
HC emission rate map and combined motor 
efficiency map. It can be seen that under the 
emission optimal strategy, to avoid low-efficiency 
region, the NGE starts output none-zero torque at 
alternating high speed. And in the subsequent 
operation, the NGE operates in a range where 
emissions are below 30 g/kWh, whereas under the 
battery degradation optimal strategy, it operates 
below 50 g/kWh. Moreover, under battery optimal 
strategy, PMSM reduces the output range to 
decrease the battery current, thereby delaying 

 

 

                           (a)                                                   (b)                                                   (c) 

Figure 14. (a) NGE operating points with gas consumption rate map, (b) NGE operating points with 
emission rate map, (c) PMSM operating points with efficiency map. 
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degradation. In this scenario, the PMSM primarily 
plays a role in adjusting the operating conditions of 
the NGE. Thus, under  =0.8 configuration, the 

reason why the NGE operates in a strip-shaped 
area can be explained. Because the fuel and 
emission efficiencies are guaranteed in this area. 
Table 2 shows the results under different tuning 
factors. Overall, the tuning factor has a significant 
impact on the optimization results of energy 
management. 

Table 2. Results of different values of tuning factor. 

 MPC   =0.2   =0.8 

Gas consumption    [kg] 15.466 15.465 

NOx+HC                  [kg] 0.930 1.015 

Battery degradation [%] 0.054 0.013 

Final SOC                [%] 64.99 64.87 

4.2 Hardware-in-loop test 

In this work, the proposed EMS is further 
validated through HIL testing. An HIL test 
environment was established using the NI 
CompactRIO-9038 platform. The simulation model 
and the MPC strategy were deployed to the chassis 
of cRIO-9038 through a code generation tool. 
Additionally, NI-9021 and NI-9263 modules were 
utilized to collect model feedback states and output 
control commands from EMS, respectively. Figure 
15 illustrates this process. And Figure 16 shows the 
physical hardware setup.  

EMS

State Feedback

&

Control Input

Data Data

Code
Generation

HPS 

model

 HIL test platform

 

Figure 15. The deployment process of HIL test. 

 

Figure 16. NI cRIO-9038 with NI-9021 and NI-9263 
models. 

Figure 17. Results of HIL test. 

The HIL results present in Figure 17 are 
basically the same as those of simulation, which 
can effectively meet the requirements for speed 
tracking and battery SOC constraints. Due to the 
HIL calculation accuracy, slight differences in 
torque distribution can be observed between 
530~670s. However, these errors are within an 
acceptable range and have little impact on the 
results. The HIL results are shown in Table 3, which 
don’t have a significantly difference compared to 
simulation results. Thus, the real-time performance 
of the proposed strategy has been successfully 
validated. 

Table 3. Comparison of HIL and simulation results. 

 HIL Simulation 

Gas consumption     [kg] 15.453 15.452 

NOx+HC                  [kg] 1.002 1.000 

Battery degradation [%] 0.040 0.039 

Final SOC                [%] 64.99 64.99 

5 Conclusions  

In order to solve the optimal control problem of 
gas-electric parallel marine hybrid propulsion 
system, a predictive EMS based on MPC was 
proposed. The main task of EMS was to achieve 
power allocation under multiple objectives, 
including gas consumption, emissions and battery 
degradation. And a tuning factor was introduced to 
change the performance preferences of HPS. 
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Additionally, a ship predictor based on LSTM model 
was utilized. 

The effectiveness of the proposed EMS has 
been validated through simulation and HIL test. 
The MPC-based EMS reduced gas consumption, 
pollutant emissions and battery degradation by 
0.71%, 15.18% and 96.34%, respectively, 
compared to the RB strategy. In addition, its 
performance closely approximates the optimal 
results of the DP strategy. Furthermore, the tuning 
factor operates within the expected range, 
effectively determining the trade-off performance 
between emissions and battery protection in the 
HPS. The proposed strategy demonstrates high 
efficiency and significant application potential.  
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