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ABSTRACT

Building on the foundation of our previous work, this paper delves deeper into the integration of
physics-based models and machine learning algorithms to develop a condition-based monitoring
platform for large-bore medium-speed engines. Predicting and planning maintenance tasks
intelligently and efficiently remains crucial for engines where availability is paramount, providing
substantial economic benefits by reducing downtime, preventing critical failures, and extending
maintenance intervals based on engine condition.

Our prior research demonstrated the efficacy of a condition-based monitoring system that utilizes a
physics-based digital twin, machine learning algorithms, and big data analytics. This system
continuously monitors the engine using a network of sensors strategically placed across all primary
engine circuits: combustion, fuel, lubrication, coolant, air/exhaust, and bearings. While physics-based
models effectively detect early warnings of failures and deviations in circuits that can be accurately
modeled, machine learning approaches proved advantageous for circuits like the lubrication system
and the bearings, which are challenging to capture with traditional physics-based models.

In this follow-up study, we focus on creating a hybrid model that combines the strengths of both
physics-based and machine learning models to enhance prediction accuracy and reliability.
Specifically, we target the air/exhaust path, oil pressure, and bearings to develop a more
comprehensive understanding of engine health.

The practical deployment of this system on numerous vessels introduces new challenges, such as
data management, storage, accessibility for calculations, model training, validation, and active
retraining. We address these challenges by implementing robust data management solutions and
ensuring the hybrid model adapts to real-world operational conditions.

Our results indicate that both physics-based and machine learning models can accurately capture the
engine's condition. However, translating these results into actionable health metrics remains essential.
This paper presents detailed case studies and results from the deployed system.
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1 INTRODUCTION 

Building on the foundation of our previous work, 
this paper delves deeper into the integration of 
physics-based models and machine learning 
algorithms to develop a condition-based monitoring 
(CBM) platform for large bore medium speed 
engines. Such a platform can deliver significant 
economic benefits for engines where availability is 
paramount by reducing downtime, preventing 
critical failures and extending maintenance 
intervals based on engine condition rather than 
time.   

Our previous research has demonstrated the 
effectiveness of a CBM-system using a physics-
based digital twin, machine learning (ML) 
algorithms and big data analytics. This system 
continuously monitors the engine using a network 
of sensors strategically placed in all primary engine 
circuits: Combustion, fuel, lubrication, coolant, 
air/exhaust and bearings. While physics-based 
models are effective at detecting early warnings of 
failures and deviations in circuits that can be 
accurately modelled, machine learning approaches 
proved advantageous for circuits such as the 
lubrication system and the bearings, which are 
difficult to capture with traditional physics-based 
models. 

In this follow-up study, we improve upon the 
existing models and work towards a hybrid model 
that combines the strengths of both physics-based 
and machine learning models. This fusion is 
particularly useful for applications where certain 
behaviours follow well-defined causal 
relationships, while others emerge from complex, 
hidden dependencies within large data sets. By 
leveraging both approaches, the model improves 
predictive accuracy and adaptability in scenarios 
where purely analytical or data-driven methods fall 
short.  

In addition, we'll focus on the practical 
implementation of this system on multiple vessels, 
which presents new challenges such as data 
management, storage, accessibility for 
calculations, model training, validation and active 
retraining. We address these challenges by 
implementing robust data management solutions 
and ensuring the hybrid model adapts to real-world 
operational conditions. 

2 PHYSICS BASED MODELS 

2.1 Introduction 

Physical model-based approaches typically employ 
mathematical models that are directly linked to 
physical processes that contribute to the health of 
a component or system. Physical models are 

developed by domain experts, and their 
parameters are validated by large data sets. 

The initial development of the physics-based digital 
twin model in use here has been described in a 
previous work [1]. A mean value model was chosen 
rather than a crank-angle resolved model. Although 
the latter, exemplified by the fill-and-empty model, 
offers greater accuracy in simulating engine 
performance, these models fall short of meeting 
real-time operational requirements [2]. 

Over time, important shortcomings of the original 
mean value model were identified. Key areas 
requiring improvement included the need for 
parametrization, optimization of computational 
efficiency, enhanced calibration and validation 
approaches and the enhancement of model fidelity. 
To address these challenges, the following 
changes were made: 

1. Expanded parametrization: 

The initial model was developed for a specific 
engine type, an ABC 6-cylinder D36 PLN 
engine. This resulted in little flexibility and a lot 
of effort when trying to port the model to other 
engine types with different cylinder counts, fuel 
injection systems, etc. Therefore, the model 
was refactored into a much more flexible and 
parametrizable framework, enabling users to 
define key engine characteristics within a 
single structured configuration file. This 
eliminates the need for multiple engine-specific 
codes. Given the vast number of possible 
engine configurations, this enhancement was 
essential for ensuring scalability and efficient 
model management. 

2. Improved computational efficiency:  

To meet the increasing simulation demands, 
optimizations in the solver were necessary. As 
additional engines and engine configurations 
were integrated into the framework, the 
computational load grew significantly, requiring 
targeted improvements to enhance efficiency. 
These optimizations ensured that the model 
remained scalable and capable of handling 
complex simulations without excessive 
computational overhead. 

3. Enhanced Calibration Mechanisms:  

With the increasing number of engine 
configurations and engines that were 
integrated into the framework, manual 
calibration and visual validation became 
unsustainable. To address this, the process 
was systematically automated by integrating 
both the calibration and validation step into the 
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work orchestration tool, which is discussed in 
Chapter 5. This automation enables real-time 
adjustments based on empirical data while 
providing a structured output that clearly 
indicates the success or failure of the 
calibration and validation process.  

4. Future proofing alternative fuels 

To ensure the longevity and adaptability of the 
model, it has been designed to accommodate 
future advancements in alternative fuels. The 
framework supports the inclusion of a wide 
range of fuel types and corresponding 
combustion models, including regular diesel, 
spark-ignited hydrogen mono-fuel, dual-fuel 
methanol port fuel injection, dual-fuel gas, and 
more. By maintaining a flexible and modular 
structure, the model can easily integrate new 
fuel technologies as they emerge, enabling 
seamless adaptation to evolving industry 
standards and regulatory requirements. This 
future-proofing approach ensures that the 
digital twin remains a valuable tool for 
analyzing and optimizing next-generation 
engines. 

2.2 Model Description 

The new model framework has been refactored to 
be fully parameterizable. All parameters from Table 
1 can now be freely configured. 

Table 1 - Parametrization Simulation Model 

Engine Component Options 

Cycle 4 stroke 

Cylinders 4 / 6 / 8 / 12 / 16 / 20 / … 

Bore 256 / 365 / 230 / … 

Stroke 310 / 420 / … 

Compression Ratio 12.5 / 15.5 / 17.5 / … 

Volumetric Efficiency ABC map based on 1D sim 

Low Pressure TC KBB 4D map 

High Pressure TC KBB 4D map 

Injection system PLN / CR / DF PFI 

Fuel  Diesel / Hydrogen / Methanol 

Waste Gate Discharge Coefficient 

A schematic of the model components can be seen 
in Figure 1. The mean value model assumes that 
the airflow at the inlet and exhaust is nearly 
homogeneous and steady. Air is modelled as a 
compressible fluid. Air and combustion gasses are 
modelled with different heat capacities. 
Additionally, as the air flows from one component 
to another, it can be thought of as travelling through 
a stream tube. Inside a stream tube, the air is 
assumed to act as an ideal fluid. An ideal fluid is 
one in which there is no viscous stress and no heat 
conduction. Within the momentum equation the 

effects of potential energy are neglected. With this 
assumption the total enthalpy is constant in a 
stream tube. 

 

Figure 1. 0D/1D engine model schematic. P – 
pressure; T – temperature; LPC – low pressure 
compressor; HPC – high pressure compressor; IC 
– intercooler; CAC – charge air cooler; HPT – high 
pressure turbine; LPT – low pressure turbine; SCR 
– selective catalytic reduction; DPF – diesel 
particulate filter.  

2.3 Model Validation 

The simulation model was calibrated and validated 

extensively based on test bench measurements. 

After validation on test bench measurements, it 

was deployed using real world transient engine 

data, of which results are discussed in the following 

sections.  

To thoroughly assess the model’s performance, 

three distinct validation periods were conducted, 

each designed to evaluate its ability to accurately 
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capture engine behaviour over different 

timeframes. The goal is to prove that the model is 

robust and accurate across different time scales. 

One parameter, the pressure after the low-pressure 

compressor, was chosen for the discussion of the 

validation. Other parameters will not be discussed 

in detail, but are equally well captured by the model. 

2.3.1 Short length timeframe validation 

A first validation of the engine model on field data 

was carried out in a shorter timeframe to reduce the 

computational cost and improve the interpretability 

of the results. A timeframe of 4 days was opted for 

to ensure enough variability in the engine operation 

while still allowing the data to be represented in a 

time series graph for validation. This validation 

provides an initial indication of the model reliability 

in predicting engine behaviour. Results are 

presented in four distinct types of graphs, each 

serving a unique purpose in order to get a good 

understanding of how the model performs.  

Figure 2 shows a time series plot of both the 
modelled and measured data. It is clear from the 
measured data that the engine’s operation is not 
steady state and load is varying constantly. Based 
on an initial visual interpretation of the graph, the 
modelled value clearly matches the measured 
value well. Note however, that Figure 2 does not 
give much insight into how well the model is 
performing for specific operating conditions of the 
engine, nor does it provide more than a qualitative 
comparison of the modelled and measured values. 
Therefore, three additional views were designed to 
gain a better understanding of the model 
performance. 

 

Figure 2 - Time Series Data of the modelled and 
the measured Pressure After the LP Compressor 

 

Figure 3 – Frequency distribution of the Absolute 
Error between the modelled and measured 
Pressure after the LP Compressor.  

Figure 3 shows the frequency distribution, mean 
error and standard deviation of the absolute error 
between the measured and modelled data. The 
distribution of errors is unimodal but slightly 
negatively skewed, indicating that the model tends 
to underestimate the modelled values more often 
this it overestimates them. The low mean error 
indicates that, on average, the model’s predictions 
closely align with the measured values, suggesting 
minimal systematic bias. Additionally, the low 
standard deviation implies that the errors are 
relatively consistent and do not vary significantly 
across the dataset. This proves that the model 
provides stable and reliable predictions with 
minimal fluctuations in accuracy. 

Figure 4 shows a contour plot of the absolute 
difference between the measured and modelled 
values mapped to the engine speed and load. This 
allows us to clearly determine whether the engine 
model works well for the entire engine operating 
range. A few conclusions from this graph show that:  

 The engine speed varies between three 
distinct setpoints: 600 / 685 / 720 rpm. 

 The engine load varies continuously over 
these distinct speed setpoints ranging from 
20% - 100% load. 

 The model captures the engine operation 
well but shows that at low load the model 
slightly underestimates the pressure, while 
at high load this is not an issue. This 
explains the slight negative skew in the 
distribution as seen in Figure 3 
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Figure 4 – Contour plot of the absolute difference 
between the modelled and measured Pressure 
after the LP Compressor. 

Figure 5 presents a linearity plot, a scatter plot that 
compares measured values on the x-axis and 
modelled values on the y-axis. This plot is often 
used to evaluate a model’s predictive accuracy, 
particularly for large datasets. The linearity plot also 
includes a density representation, where lighter-
colored points indicate areas with a higher 
concentration of data. This visualisation helps 
identify where most of the measured and modelled 
values align, highlighting the most common error 
patterns. A strong clustering of high-density points 
around the y=x line suggests that the model 
performs well for the majority of cases. While 
deviations in lower-density regions may indicate 
outliers or specific conditions where the model is 
less accurate.  

 

Figure 5 – Linearity plot of the modelled and 
measured Pressure after the LP Compressor. 

2.3.2 Medium length timeframe validation 

After the initial validation on a limited timeframe, 
more extensive validation was done for an 
extended timeframe of 3 months. This allows an 
assessment over a more extended period, 
capturing potential seasonal variations and longer 
time trends, while still being relatively short enough 
to retain a high degree of granularity. Results are 
represented in the same graphs as discussed for 
the short timeframe validation in Figure 6, Figure 7, 
Figure 8, Figure 9. The conclusions are 
summarised below: 

 

Figure 6 - Time Series Data of the modelled and 
the measured Pressure After the LP Compressor. 

 

Figure 7 – Frequency distribution of the Absolute 
Error between the modelled and measured 
Pressure after the LP Compressor. 

 A qualitative validation based on Figure 6
does not make sense anymore due to the 
fine-grained nature of the data resulting in 
an overcrowded graph. Making it 
impossible to discern meaningful patterns 
or trends. 

 Figure 7, Figure 8, Figure 9 present results 
that are consistent with those observed 
during the short-term validation, indicating 
that the model is capable of accurately 
capturing the engine’s behaviour over 
extended periods of time. 
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Figure 8 - Contour plot of the absolute difference 
between the modelled and measured Pressure 
after the LP Compressor. 

 

Figure 9 – Linearity plot of the modelled and 
measured Pressure after the LP Compressor. 

2.3.3 Long length timeframe validation 

The final validation involves a comprehensive 
three-year period. This long-term validation 
provides a thorough test of the model’s ability to 
maintain accuracy over a significant period, 
accounting for long-term trends and potential 
changes in the engine’s behaviour over time. 

Results are bundled in a different representation, 
more suited for long term validation of model. 
Figure 10 shows a validation plot of the pressure 
after the low-pressure compressor. The main plot 
presents a time series representation of the relative 
error between the measured and modeled values. 
Within this main plot, two subplots are included: 
one illustrating the distribution of the absolute error 
between the measured and modeled values, and 
the other displaying a linearity plot. 

In conclusion, the relative error, the distribution of 
absolute error, and the linearity plot collectively 
demonstrate that the model performs well, even 
when applied to a very large dataset. The relative 
error remains within acceptable bounds, the 
distribution of absolute errors shows no significant 
biases, and the linearity plot confirm a strong 
correlation between the measured and modeled 
values.  

 

Figure 10 - Validation plot of the Pressure After LP 
Compressor spanning over a 3-year period. 

2.4 Limitations  

The accuracy of physics-based engine models 
heavily depends on the foregoing calibration 
process. Accurate engine modelling requires 
precise calibration of numerous parameters, such 
as volumetric efficiency, fuel injection strategies, 
combustion characteristics, turbocharging 
behavior, heat exchanger characteristics, etc. 
Traditional calibration approaches rely on 
controlled test bench experiments and physics-
based 0D/1D simulation to construct these 
mappings.  

However, real-world engine behavior frequently 
differs from controlled test conditions due to factors 
such as ambient variations, component aging, 
differences in engine integration within the 
installation, and dynamic operating conditions. 
Additionally, engine testing is often limited to 
standardized operating points mandated by 
emissions regulations, which may not accurately 
represent real-world usage scenarios.  

Chapter 4 proposes a solution to this problem using 
a hybrid modelling approach, incorporating real 
engine telemetry and machine learning algorithms 
into the physics-based model. First, however, the 
next chapter will discuss the different machine 
learning algorithms that exist, and which ones are 
best suited to our needs.  
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3 MACHINE LEARNING ALGORITHMS 

3.1 Introduction 

Machine learning techniques, such as neural 
networks, support vector machines (SVM), and 
decision trees, can analyze vast amounts of sensor 
data, identify patterns, and predict failures before 
they occur. In our previous work [1], we used these 
techniques solely for parameters which were too 
complex for physics-based approaches. For 
example, ABC developed a machine learning 
model in collaboration with PolySense [3] for 
monitoring the oil pressure inside the engine’s oil 
circuit. Other parameters, such as pressures, 
temperatures, rotational speeds were modeled with 
the mean value model.  

However, machine learning can provide an 
alternative approach that can capture intricate 
patterns and relationships within this data as well 
that might be difficult to explicitly define through 
physics-based models alone. Therefore, in this 
work, we have expanded our methodology to apply 
machine learning across a broader range of engine 
parameters. Rather than focusing on a single 
parameter, our approach now aims to model the 
entire engine’s behavior. This is made possible by 
an automated and standardized pipeline that 
enables the development of predictive models for 
multiple engine parameters in a consistent and 
scalable manner (see Chapter 5). By utilizing 
machine learning techniques, we can explore 
correlations between parameters and better 
understand how they interact under different 
operation conditions, improving predictive 
accuracy and adaptability across various engine 
configurations. 

The following sections explore the selection, 
training, application, and validation of these models 
using extensive datasets derived from multiple 
engines, with a particular focus on field data 
generated under real-world operational conditions. 

3.2 Model Selection: Production vs 
Academia 

To find the right ML algorithm to work with, the 
distinction between machine learning research and 
production ML needs to be addressed first, as they 
are characterized by significant differences in 
objectives, constraints and operational challenges 
[4]. Academic ML typically emphasizes optimizing 
model performance within controlled, idealized 
environments, where the focus is on pushing the 
boundaries of algorithmic performance and 
achieving high accuracy under carefully curated 
conditions.  

These specialized ML techniques, which may be 
tailored to specific use cases or optimized for 

particular tasks, are often seen as a means to 
achieve state-of-the-art performance. However, in 
a production environment, such highly specialized 
methods may not always be the best choice. The 
complexity can introduce issues such as overfitting, 
difficulties in generalization, and increased 
computational and maintenance costs. 

In contrast, more generalized and flexible machine 
learning approaches, when carefully designed for 
scalability and robustness, tend to perform better in 
production environments. These models are easier 
to deploy, update and maintain while ensuring 
consistent performance across a variety of 
scenarios.  

The fundamental difference lies in the shift from 
model-centric to system-centric thinking. 
Overlooking this distinction can lead to failures in 
ML deployment. We therefore deliberately chose to 
focus our efforts on well-established, rather than 
specialized models. An overview of the different 
models investigated can be found in Table 2.  

Table 2. Overview of the different MLA depending 
on their applications.  

Machine Learning Algorithms 

Engine diagnostics 

General 

 

Regression 

Fault detection Decision Trees 

Random Forests 

Support Vector Machines  

Classification Neural Networks 

Anomaly detection K-Means 

DBSCAN 

Autoencoders 

PCA 

Predictive maintenance  

Remaining useful life 

(RUL) 

Linear Regression 

Support Vector Regression 

XGBoost 

Degradation Long Short-Term Memory 

GRUs 

ARIMA 

 

3.3 Case Studies 

It was observed that the approach used for 
developing the machine learning models could be 
effectively generalized, provided that variability in 
the feature selection process was incorporated. 
Specifically, by allowing flexibility in the selection of 
features, the model can be adapted to different 
datasets, different engines, and a wide range of 
parameters.  

The pipeline (generalized approach) is designed to 
create models for various engine parameters, such 
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as pressures, temperatures, speeds, and others. 
While the approach is generalized, it is crucial to 
recognize that each parameter requires a unique 
set of features for optimal model performance. 
Therefore, a robust and adaptable feature selection 
method is essential to ensure that the most relevant 
and informative features are identified for each 
specific model. 

To further support the required flexibility, a 
promising solution is through the use of linear 
regression enhanced with polynomial features. 
Polynomial regression [5], which extends linear 
regression by including higher-degree polynomial 
terms of the original features, allows the model to 
capture non-linear relationships between the input 
features and the target parameters. This approach 
strikes a balance by providing the necessary 
flexibility to model complex patterns while 
maintaining the simplicity and interpretability of 
linear regression. 

The following paragraphs present a discussion of 
two models: one for predicting the main bearing 
temperature of the engine, and the other for 
estimating the charge air pressure of the engine. 

3.3.1 Bearing Model 

The first model to be discussed is designed to 
predict the main bearing temperatures of the 
engine. Typically, bearing health is monitored using 
accelerometers, which detect changes in the 
frequency spectrum that can indicate wear or 
failure. However, due to the cost of the high-speed 
data capturing necessary for these accelerometers, 
these are not available for our analysis.  

The pipeline described in the previous section was 
employed for both the feature selection and model 
training. The model was trained and validated 
across three different timeframes: short-term (a few 
hours), medium-term (three months), and long-
term (three years). This multi-timeframe approach, 
as previously employed for the physics-based 
models, allowed for a comprehensive evaluation of 
the model’s performance and its ability to capture 
engine behavior across various operational 
periods.  

Results are bundled in similar representation as 
introduced in a Chapter 2.3.3, Figure 10. With the 
addition that the data that is used for training the 
model is highlighted in blue, and the data on which 
the model is validated, is highlighted in red. This is 
done because in time series forecasting, traditional 
random splitting of data into training and testing 
data is not appropriate, as it can result in data 
leakage, where information from the future is used 
to predict the past, and in overfitting the model. 
Instead, the data should be split chronologically, 

ensuring that the model is trained on past data and 
tested on future data. This best simulates real-
world forecasting where future values are predicted 
based on past observations.  

Figure 11 shows the validation plot for a short-term 
period. The relative error, mean error and standard 
deviation are small, indicating the model captures 
short term periods really well. It is clear from the 
linearity plot that the bearing temperature does not 
fluctuate much, only 5°C with varying load. Even 
these small fluctuations are very well captured by 
the model. 

 

Figure 11 - Validation plot of the bearing 
temperature model for the main bearing 
temperature over a short-term period. 

Figure 12 and Figure 13 show the validation plot for 
the medium-term and long-term timeframes. The 
relative error, mean error and standard deviation 
are higher than the short-term validation, but they 
are still well within bounds of a very good model. 
Upon closer examination of the relative error, it is 
observed that over time, the error transitions from 
a slightly positive value to a slightly negative value. 
This trend suggests that the actual bearing 
temperatures are gradually increasing under the 
given operating conditions. 

 

Figure 12 - Validation plot of the bearing 
temperature model for the main bearing 
temperature over a medium -term period. 
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Figure 13 - Validation plot of the bearing 
temperature model for the main bearing 
temperature over a long-term period. 

3.3.2 Charge Pressure Model 

The second model focuses on predicting the 
charge air pressure after the high-pressure 
compressor, another critical parameter of the 
engine, also captured by the digital twin as 
previously mentioned in Chapter 2.2. 

Figure 14, Figure 15 and Figure 16 show that the 
relative error, mean error, and standard deviation 
are higher in the medium- and long-term validations 
compared to the short-term validation; however, 
they remain well within the bounds of a very good 
model, indicating that the model’s performance is 
stable over time. However, in the long-term 
validation, it is clearly observable that the charge 
air pressure decreases over time for a fixed engine 
load. This pattern suggests a gradual reduction in 
pressure under constant load conditions, which 
could point to factors such as compressor 
degradation, turbine degradation, fouling, or other 
long-term engine wear mechanisms. 

 

Figure 14 - Validation plot of the charge air 
pressure model over a short-term period. 

Despite this trend, the model continues to capture 
the overall behavior of the engine effectively, and 
the observed variations in the charge air pressure 

provide valuable insights for further investigation 
into the long-term performance of the engine. 

 

Figure 15 - Validation plot of the charge air 
pressure model over a medium-term period. 

 

Figure 16 - Validation plot of the charge air 
pressure model over a long-term period. 

3.4 Challenges and limitations 

Data scarcity, sensor failures, and noisy data are 
key challenges in building accurate models. Limited 
or missing data can lead to overfitting or poor 
generalization, while sensor issues introduce 
inaccuracies that degrade model performance. 
Noice further complicates the learning process, 
requiring effective data preprocessing to maintain 
accuracy. 

Model interpretability is another challenge, as many 
machine learning models operate as "black boxes." 
Lack of transparency makes it difficult to 
understand predictions, limiting trust and 
complicating troubleshooting. Ensuring model 
explainability is crucial for validation and regulatory 
compliance. This is the main reason why a 
regression approach is favourable.  

Lastly, computational limitations pose barriers for 
real-time deployment. Complex models can require 
significant processing power, which is often 
unavailable in real-time systems. Optimizing model 
efficiency while maintaining performance is 
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necessary for practical deployment in time-
sensitive applications. 

4 HYBRID APPROACH 

4.1 Introduction 

Machine learning and simulation intersect in three 
key subfields as portrayed in Figure 17. Simulation-
assisted machine learning (SAML) refers to the 
incorporation of simulation techniques to support 
and enhance machine learning models. This 
approach is particularly important where real-world 
data collection is impractical, costly, or infeasible. 
Simulations can generate synthetic datasets for 
training machine learning algorithms and enable 
the exploration of hypothetical scenarios beyond 
the limitations of empirical data. Collecting engine 
data is expensive, so to get the models up and 
running, this is a reasonable approach.  

 

Figure 17. Combining machine learning and 
simulation [6].  

Machine learning-assisted simulation (MLAS) 
involves leveraging machine learning 
methodologies to improve the accuracy, efficiency, 
and scalability of simulations. ML can serve as a 
surrogate model to approximate computationally 
expensive simulations (ID, flame speed, 
Combustion Event, …), optimize parameters to 
enhance the simulation fidelity, or reduce 
dimensionality to streamline complex models.  

Finally, hybrid approaches represent bidirectional 
integration of machine learning and simulation, 
where both domains contribute to and refine each 
other in a mutually reinforcing manner.  

The challenges identified in sections 2.4 and 3.4 
can be addressed through either of these sub-
areas. In this work specifically, we are going to 
explore MLAS and how it can be useful for 
calibration of various parameters and engine maps 
used in the simulation model. 

4.2 MLAS for engine mapping 

To address the challenges posed by diverse engine 
variations and real-world operating conditions, we 
propose a MLAS calibration approach that 
integrates test bench data, physics-based 
simulations, real-world engine telemetry, and 
machine learning techniques. By leveraging real-
world data, we refine engine maps to better reflect  

operational conditions while maintaining physically 
interpretable constraints. This methodology 
combines traditional modeling techniques with 
data-driven corrections, ensuring enhanced model 
accuracy, adaptability, and predictive reliability. 
Figure 18 outlines a structured workflow for 
integrating real-world data into the calibration 
process, using machine learning to fine-tune maps 
within predefined physical limits, making the 
framework robust enough to accommodate a wide 
range of engine variations.  

The first step is to create all the engine maps 
needed by the physics-based simulation model (i.e. 
the digital twin model) to process the data. The 
simplest maps are those of the turbines, 
compressors, heat exchangers, etc. These can be 
supplied by the manufacturer or produced from test 
bench data. On every engine, 160 sensors are 
placed strategically among the principal circuits of 
the engine. When the engine is factory approved 
according to standardised guidelines, an initial set 
of key performance data is created. Furthermore, 
0D/1D simulations are used to fill the gaps where 
test data is sparse or impractical to measure: 
volumetric efficiency, trapping ratio, EGR, … 

In a second step, once the engine is 
commissioned, sensor data from real-world 
operation conditions can be collected. This data 
can be used to identify deviations between the 
originally constructed engine maps and maps that 
would be developed based on the actual working 
regime.  

This real-world data, together with the output of the 
simulation model and the initial engine maps will be 
used to train a machine learning model. The model 
will attempt to reduce the simulation error using 
engine map correction factors. To ensure safety 
and interpretability, adaptive models are needed to 
adjust the maps within predefined physical 
boundaries. Additionally, reinforcement learning or 
Bayesian optimisation techniques can be used to 
dynamically tune key parameters for optimal 
performance of the ML model.  

Finally, by implementing an iterative calibration 
loop, updated maps can be retested and validated 
against any new real-world data. Automatic 
periodic recalibration using field data can also be 
added to improve the model robustness over time.   

The output of the optimized simulation model will 
form the hearth of the CBM system. By 
continuously comparing the simulated results for 
specific operating conditions with the actual 
measured results, prognostics and health 
management algorithms will be able to detect any 
faults or anomalies in the system and indicate the 
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life expectancy of critical components based on 
specific component health metrics. 

4.3 Results 

The approach discussed above ensures that 
engine maps remain physically meaningful while 
continuously adapting to real-world conditions. It 
provides a structured methodology to enhance 
performance, efficiency, and robustness without 
compromising safety or interpretability.  

 

Figure 19 - Contour plot of the absolute difference 
between the modelled and measured Pressure 
after the LP Compressor. 

An example of how MLAS can enhance engine 
mapping in the physics-based model is 
demonstrated through the results of the previously 
discussed validation of the pressure after the low-
pressure compressor shown in Figure 19. The 
contour plot indicates that the model performs well 

across the entire engine operating range, 
remaining within an acceptable fault margin. 
However, a clear trend emerges: at lower loads, the 
model tends to underpredict the pressure, whereas 
at higher loads, it slightly overpredicts. 

This data can be leveraged to refine the modeling 
maps, correcting these localized errors and 
improving overall model accuracy. Essentially, this 
process involves recalibrating the existing maps 
used in the physics-based simulation to better 
match the specific engine. This is a logical 
adjustment, considering that the initial simulation 
maps are theoretical, derived from controlled test 
setups under ideal conditions. In reality, 
manufacturing tolerances introduce slight 
variations between engines, making it necessary to 
fine-tune the maps within the bounds of physical 
feasibility to better represent the actual engine 
behavior. 

4.4 Challenges & Future directions 

By incorporating machine learning techniques into 
the physics-based model, MLAS reduces the 
sensitivity of the digital twin to the calibration 
process. However, a hybrid modelling approach 
also presents key challenges that need to be 
addressed. Effective data management is 
essential, as it involves integrating large streams 
from multiple sources, such as sensor and 
experimental data, while dealing with noise, 
missing values or limited data sets. Computational 
efficiency must also be balanced with model 
complexity, particularly when combining physics-
based and data-driven approaches. Ensuring 
interpretability will be necessary, especially when 
using deep learning, with the aim of achieving 

Figure 18. Flowchart of Hybrid Engine Calibration Mapping.  
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Explainable AI (XAI) in industrial applications. 
Additionally, maintaining and updating models is 
important to keep them accurate and reliable as 
new data or system changes emerge. By 
addressing these challenges, hybrid modeling can 
greatly enhance engine diagnostics and predictive 
maintenance. 

As this system is further deployed, future advances 
in hybrid modelling for combustion engine health 
monitoring will use cutting-edge machine learning 
techniques such as deep reinforcement learning, 
transfer learning and federated learning to improve 
real-time diagnostics. A key focus will be 
integrating these models into real-time systems, 
enabling predictive maintenance and fault 
detection directly in operational engines. 
Additionally, AI-driven optimization will allow hybrid 
models to dynamically adjust engine parameters 
based on health predictions, improving efficiency 
and longevity. The adoption of edge computing and 
IoT will further enhance real-time capabilities, 
enabling distributed, onboard health monitoring 
systems that provide accurate and timely insights 
for engine performance management. 

5 DEPLOYMENT 

5.1 Motivation 

Despite the challenges discussed in section 4.4, 
the deployment of a particular system is not 
generally perceived as constituting a primary 
challenge in the design of a platform for condition 
monitoring of engines. However, when the number 
of engines incorporated into the system exceeds a 
certain threshold, this rapidly becomes a 
bottleneck, which complicates scalability and 
system management.  

To illustrate the scale of data generation, a typical 
engine is equipped with 50 - 150 sensors, each 
recording parameters such as temperature, 
pressure, and speed at a sampling frequency of 1 
Hz. This results in 50 - 150 datapoints per second 
per engine. Over the course of a single day, this 
equates to 4.3 - 12.9 million data points, and over 
the span of a year, an individual engine generates 
approximately 1.58 - 4.73 billion data points. This 
calculation does not account for sensors with 
sampling frequencies of 50 kHz or higher, which 
generate significantly larger volumes of data 
independently. 

As a result, the majority of development time is 
spent managing complex data structures and data 
pipelines rather than actually developing the 
system. The following section explains these key 
components that make up the system and provides 
a rationale for the importance of each component 
in ensuring an effective and scalable system. 

Figure 20 shows a high-level overview of the 
platform architecture that is currently deployed, of 
which the subcomponents are elaborated upon in 
the following sections. 

5.2 Work Orchestration & Observability 

In modern machine learning and data engineering 
pipelines, workflows often involve multiple 
interdependent tasks, such as data extraction, 
preprocessing, model training, and deployment. 
Managing these tasks manually or through ad hoc 
scripts can quickly become unmanageable, leading 
to inefficiencies, failures, and a lack of visibility into 
pipeline execution. This is where a work 
orchestrator becomes essential.  

A work orchestrator automates, schedules, and 
monitors complex workflows, ensuring that tasks 
execute in the correct order, recover from failures, 
and scale efficiently. It provides dependency 
management, error handling, logging, and retries, 
reducing operational overhead and improving 
system reliability. Additionally, an orchestrator 
enables observability, offering insights into 
workflow performance, execution history, and data 
lineage, which are critical for debugging and 
compliance. 

The work orchestrator that is chosen for this work 
is Dagster, a modern work orchestrator designed 
specifically for data and ML workflows [7]. Unlike 
traditional workflow schedulers like APACHE 
Airflow [8], Dagster treats data assets as first-class 
entities, allowing for declarative pipeline definitions 
that promote modularity and reusability. By 
leveraging Dagster, one can achieve scalability, 
reproducibility, and transparency in all the ML and 
data pipelines. 

The work orchestrator is a central component of the 
platform architecture, as illustrated in Figure 20 and 
is responsible for executing critical tasks. These 
include data ingestion from the cloud object store 
into the database, automated runs for the machine 
learning algorithms and digital twin, and scheduled 
reporting on key system metrics of the model 
status, database status, model calibration status. 
Additionally, system observability is facilitated 
through services like Grafana [9] and Prometheus 
[10], enabling real-time monitoring, alerting, and 
visualization of performance metrics. 

5.3 Continuous integration and continuous 
deployment 

A condition monitoring platform requires high 
reliability, scalability, and rapid updates to ensure 
accurate diagnostics and predictive maintenance. 
Since engines operate in dynamic environments 
and generate vast amounts of real-time data, the 
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platform must be able to process, analyze, and 
respond quickly to any anomalies. 

To address this, containerization plays a critical 
role in ensuring the system remains efficient, 
scalable, and easy to manage as the number of 
engines grows. By encapsulating the application 
and its dependencies into containers, the system 
becomes highly portable and consistent across 
different environments. This enables faster 
deployments, easier updates, and better resource 
utilization, while reducing the complexity of scaling 
the platform to accommodate additional engines. 
This allows engineers to focus more on decision-
making, model development, and optimization, 
rather than being bogged down by deployment and 
infrastructure concerns.  

As shown in Figure 20, the entire platform 
architecture is designed around the use of 
containerized applications. This approach enables 
a highly dynamic environment, allowing for faster 
and more efficient development. By supporting 
seamless scaling as more engines are added, it 
ensures consistent performance across distributed 
environments.  

The platform is tightly integrated with continuous 
integration and delivery (CI/CD) pipelines, 
facilitating automated updates to machine learning 
models, analytics algorithms, and system 
components without downtime. Additionally, the 
use of Git [11] and a local development 
environment significantly enhances development 
workflows. Git enables version control, 
collaboration, and code traceability, ensuring that 
changes can be efficiently managed, reviewed, and 

deployed. Combined with containerized 
environments, this setup allows us to test, refine, 
and deploy updates locally before pushing them to 
production, reducing errors and improving system 
reliability. 

Additionally, containers provide a standardized 
runtime, eliminating deployment inconsistencies 
and streamlining updates across diverse hardware 
configurations. With this technology, we can 
innovate at an unprecedented pace, delivering a 
more robust, efficient, and intelligent condition 
monitoring system. 

5.4 Data Management & Storage 

The effective management and storage of data are 
of critical importance for the success of production 
systems. For academic purposes, data can be 
structured in folders and stored in CSV/text files. 
This approach was adopted prior to the emergence 
of a focus on the deployment of systems. However, 
as the number of vessels increased, it became 
evident that a structural solution was required. 

Prior to the implementation of a particular 
technology or approach, a comprehensive 
delineation of the system's requirements was 
undertaken. The data produced by an engine is 
principally time-series data comprising multiple 
parameters that are retrieved from various 
systems, including the engine itself and auxiliaries. 
A database solution is typically required for such a 
dataset, and this solution must meet several key 
requirements: 

Figure 20 - Platform Architecture 
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1. High-Frequency Data Ingestion – The 
system must handle continuous, high-volume data 
streams from multiple engines and systems with 
minimal latency. 

2. Efficient Query Performance – Fast 
retrieval of historical and real-time data is crucial for 
both the machine learning models and digital twin 
simulations. 

3. Scalability – The storage system should 
efficiently scale with increasing data volume, 
ensuring long-term retention without performance 
degradation 

4. Time-Series Optimization – Support for 
automatic partitioning, compression, and indexing 
to enhance read and write performance. 

5. Data Integrity and Consistency – ACID 
compliance to ensure reliability and accuracy of the 
stored information 

6. Integration with ML and Digital Twin 
Pipelines – The ability to seamlessly interact with 
analytics and prediction workflows. 

PostgreSQL, an open source, robust, and scalable 
relational database system [12], is widely used for 
efficient data storage, retrieval, and manipulation. 
Combined with the TimescaleDB [13] extension, it 
is well-suited to meet these requirements. 
TimescaleDB enhances PostgreSQL by providing 
automatic time-series partitioning, optimized 
compression, and efficient indexing, allowing for 
scalable and performant storage of telemetry data. 
PostgreSQL’s support for structured and semi-
structured data, including JSONB, facilitates 
seamless integration with machine learning models 
and digital twin simulations. With advanced query 
optimization and real-time analytics capabilities, 
PostgreSQL and TimescaleDB ensure that vast 
amounts of engine data can be efficiently stored, 
queried, and utilized for predictive maintenance 
and operational insights. 

Proper data management with PostgreSQL 
enhances model performance, reproducibility, and 
scalability, ultimately contributing to a robust and 
maintainable system. 

6 CONCLUSIONS AND FUTURE WORK 

 The paper describes the continuation of the 
development of a condition-based monitoring 
system that is capable of data collection, 
processing, aggregation, connection to the 
cloud, executing a Digital twin and machine 
learning algorithms locally on the edge device. 

 Results show significant improvements in both 
the physics-based models and machine 
learning algorithms, along with extensive 
validation using real world data. 

 Results showed that a hybrid approach 
towards calibration and validation of the 
simulation models is viable and has the 
potential to greatly improve the model 
accuracy and to decrease the effect of engine-
to-engine variability on the model accuracy. 

 The goal of the simulation models and 
machine learning algorithms is to optimise 
maintenance intervals and tasks, have early 
anomaly detection and perform remote 
support on (efficiency) improvements. This 
drives important decisions thus the accuracy 
of such a Digital Twin is of utmost importance 
in order not to draw wrong conclusions. The 
accuracy of the ABC Digital Twin even equals 
the typical sensor chain accuracy and is 
therefore a well-suited advisor, outperforming 
humans. This will be the topic of a follow-up 
paper. 

7 DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

CBM: Condition Based Monitoring 

DT: Digital Twin 

ML: Machine Learning 

ABC: Anglo Belgian Corporation 

PLN: Pump Line Nozzle (Fuel injection system) 

CR: Common Rail 

DF: Dual Fuel 

PFI: Port Fuel Injection 

LPC: Low Pressure Compressor 

HPC: Hight Pressure Compressor 

IC: Intercooler 

CAC: Charge Air Cooler 

P: Pressure 

T: Temperature 

HPT: High Pressure Turbine 

LPT: Low Pressure Turbin 
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WG: Waste Gate 

SCR: Selective Catalytic Reduction 

DPF: Diesel Particulate Filter 

SVM: Support Vector Machines 

PCA: Principal component analysis 

MLAS: Machine Learning Assisted Simulation 

ID: Ignition Delay 

EGR: Exhaust Gas Recirculation 

XAI: Explainable Artificial Intelligence 

ACID: Atomicity, Consistency, Isolation, and 
Durability 

JSONB: JSON Binary 

CI/CD: continuous integration and continuous 
delivery/deployment 
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