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ABSTRACT

As one of the critical systems of marine diesel engine, turbocharger plays an important role in ensuring
the power of ship's sailing provided sustainably and stably by diesel engine and reducing the impact of
emissions on the environment. The fault diagnosis of diesel turbocharger is difficult to identify directly,
has a large number of faults, and many faults coexist, so the traditional fault diagnosis is difficult to
solve the problem of turbocharger fault diagnosis. In this paper, the common fault types and related
thermal parameters of diesel turbochargers are studied, and the fault data are obtained by simulation
model. The principal component analysis is used to analyze the features of the fault data, and the
main influence features of different faults are determined according to the weight value. Combined
with machine learning and optimization algorithm, a construction method of hybrid fault diagnosis
model based on feature screening is proposed. The results show that the hybrid model can accurately
classify faults with a small number of input features. The fault diagnosis model can be effectively
applied to the fault diagnosis work of turbocharger.
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1 INTRODUCTION 

As one of the critical systems of Marine diesel 
engine, turbocharger plays an important role in 
ensuring the power of marine sailing provided 
sustainably and stably by diesel engine and 
reducing the impact of emissions on the 
environment [1]. Due to the complex structure and 
long time in the harsh working environment, the 
fault of turbocharger often occurs, and the fault 
diagnosis is needed. Regular overhaul and 
maintenance of turbochargers is of great 
significance to improve engine fuel economy, 
performance and reduce exhaust emissions [2]. 

For turbocharger fault diagnosis, Vlatko et al. [3] 
used fault tree analysis (FTA) to analyze the fault 
of a turbocharger, so as to estimate the reliability of 
the system and predict the cause of the fault. With 
the development of artificial intelligence algorithms, 
many studies have applied machine learning to 
fault diagnosis. Adamkiewicz et al. [4] determined 
the working parameters of the turbocharger system 
for monitoring the normal operation of the 
turbocharger and diagnosing the turbocharger. The 
relationship between engine shaft speed and boost 
pressure, as well as maintenance indexes are 
established by machine learning algorithm. Wei et 
al. [5] propose a construct method which is based 
on one-class support vector machine (OSVM), 
affinity propagation (AP) and Gaussian mixture 
model (GMM). The multi-fault identification 
accuracy of Marine turbocharger system is higher, 
the calculation speed is faster, and the 
generalization ability is stronger. 

In the research of fault diagnosis, it is usually 
necessary to observe the data containing multiple 
variables and collect a large amount of data. 
Multivariable large data sets will undoubtedly 
provide rich information for research and 
application, but also increase the workload of data 
collection to a certain extent. There may be 
correlations between many variables, which 
increases the complexity of problem analysis. 
Therefore, it is necessary to find a reasonable 
method to minimize the loss of information 
contained in the original features while reducing the 
features to be analyzed, so as to achieve the 
purpose of comprehensive analysis of the collected 
data [6]. 

In diesel engine fault diagnosis, PCA method is 
often used to reduce the dimension of 
characteristic parameters. Hou et al. [7] studied the 
problem of unbalanced fault data due to the 
randomness of marine fault and fault duration. 
Principal component analysis (PCA) is used to 
convert high-dimensional fault samples to low-
dimensional fault samples to reduce the 
computational complexity. Su et al. [8] studied the 

multi-parameter prediction and fault warning of 
MDEs. A combined neural network prediction 
model PCA-CNN-BILSTM is proposed based on 
PCA to reduce dimensionality of data. 

In this paper, the main features of turbocharger 
fault samples are analyzed by PCA, and a hybrid 
fault diagnosis model based on feature screening 
is proposed. The contributions of this study are as 
follows: 

(1) The fault samples of turbocharger were 
obtained by two-stroke diesel engine simulation 
model, and the fault diagnosis model was 
constructed based on thermal parameters. The 
accuracy of fault diagnosis models constructed by 
different machine learning methods is analyzed. 

(2) PCA was used for feature selection, and main 
features were screened according to feature 
weights. Analyze the thermal parameters with the 
highest correlation between different faults of 
turbochargers. 

(3) According to the main characteristics of different 
faults, a hybrid feature fault diagnosis model based 
on PCA is proposed. Combined with the 
optimization algorithm, the model parameters are 
optimized to further improve the accuracy of the 
model. 

This paper is organized as follows: Section 2 shows 
the fundamental algorithm theories and the 
evaluation index. Section 3 is the construction and 
verification of simulation model, the acquisition of 
thermal parameters and the acquisition of fault 
samples. In Section 4, PCA is used for feature 
screening, and a hybrid fault diagnosis model was 
constructed with main features for analysis. 
Conclusions are given in Section 5. 

2 THEORETICAL BASIS 

2.1 Machine learning 

In this paper, several common machine learning 
algorithms are selected to construct fault diagnosis 
models, such as SVM[9-10],BP[11-12],RF[13-
14],ELM[15-16], to construct diesel engine fault 
diagnosis models, and to study the feature analysis 
of different models. 

BP and ELM belong to neural networks. The 
structure of neural network is shown in Figure 1. BP 
is a kind of multi-layer feedforward neural network, 
which is characterized by forward transmission of 
signal and back propagation of error. ELM is a 
Singl-hidden Layer Feedforward Neural Network. 
This method has the advantages of fast learning 
speed and good generalization performance. 
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Figure 1. Neural network structure 

Support Vector Machines (SVM) is a binary 
classification model. Its basic model is the linear 
classifier with the largest interval in the feature 
space, which distinguishes it from the perceptron 
most. SVM also includes kernel techniques, which 
make it essentially a nonlinear classifier. The 
learning strategy of SVM is to maximize the 
interval, which can be formalized as a problem of 
solving convex quadratic programming. It is also 
equivalent to the regularized problem of minimizing 
the hinge loss function. 

 

Figure 2. SVM structure 

DT is an inductive learning algorithm based on 
example. The attribute values are compared in the 
inner nodes (non-leaf nodes) of the decision tree, 
and the branch down from the node is judged 
according to different attribute values, and the 
conclusion is obtained in the leaf nodes of the tree. 
RF is essentially a classifier containing multiple 
decision trees. The formation of these decision 
trees adopts random methods, so it is also called 
random decision trees. The trees in RF are not 
related to each other. Finally, the class with the 
most classification results in all decision trees is the 
final result. 

 

Figure 3. DT structure 

2.2 Principal component analysis 

Since there is a certain correlation between 
variables, it can be considered to change the 
closely related variables into as few new variables 
as possible, so that these new variables are pinions 
uncorrelated, so that fewer comprehensive 
indicators can be used to represent various types 
of information existing in each variable. Principal 
component analysis [17-18] is one of 
dimensionality reduction algorithms. 

Principal Component Analysis (PCA) is the most 
commonly used linear dimension reduction 
method. Its goal is to map high-dimensional data to 
low-dimensional space through some linear 
projection, and it is expected that the information 
content (variance) of the data is maximum in the 
projected dimension. This uses fewer data 
dimensions while retaining more of the 
characteristics of the original data points. The 
process is shown in Figure 4. 

 

Figure 4. The structure of PCA 
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2.3 Evaluation index 

As an evaluation of the real value and the predicted 
value, the accuracy can directly reflect the 
classification results in fault diagnosis, and the 
accuracy also reflects the accuracy of the fault 
diagnosis model.  

F1-score is a statistical measure of the accuracy of 
a binary classification model. It takes into account 
both the precision and the recall. The F1-score can 
be seen as a kind of weighted average of model 
precision and recall. It has a maximum value of 1 
and a minimum value of 0, and a larger value 
means that the model is more accurate. 

In this paper, Micro-F1 is used as the evaluation 
index of the fault diagnosis model, the total 
precision and recall of all categories are calculated, 
and then F1-score is calculated. The calculation 
equation is shown in Equation 1. 

𝐹1 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (1) 

3 SIMULATION MODEL CONSTRUCTION 
AND DATA ACQUISITION 

The research object of this paper is MAN 6S35ME-
B9.5 Marine low-speed intelligent diesel engine. 
Table 1 shows the main structural parameters of 
diesel engines. 

Table 1. Main structural parameters of diesel 
engine 

Parameter Unit Value 

Effective Power kW 3543 

Speed r/min 141 

Bore mm 350 

 Stroke mm 1550 

Compression Ratio — 21.8 

Firing Order — 1-5-3-4-2-6 

Intake Mode — Charge Inter-cooling 

The 1D simulation model of diesel engine is shown 
in Figure 5. The left side is the diesel engine's 
intake system and intercooler, the middle part is the 
diesel engine's crankshaft and six cylinders and the 

corresponding injector for each cylinder, the right 
side is the exhaust system, and the bottom is the 
diesel engine's intake environment, turbocharging 
system and exhaust environment. 

 

Figure 5. The 1D simulation model of diesel engine 

In order to verify the accuracy of the diesel 
simulation model, parameters representing the 
performance of the diesel engine were selected for 
comparison. Table 2 shows the comparison 
between the simulated values and the test value of 
the bench test. By comparing the state parameters 
of the diesel engine under different loads, it can be 
seen that the error value is less than 3%, which 
meets the test error standard requirements. 

Table 2. Comparison between test values and 
simulation values 

Parameter Unit Test Simulation Error 

Indicated 
Mean 
Effective 
Pressure 

bar 16.52 16.29 -
1.39% 

Indicated 
Power 

kw 3754.82 3824.06 1.84% 

Effective 
Power 

kw 3382.77 3426.46 1.29% 

Specific Fuel 
Consumption 

/g·(kWh) 

−1 

175.75 172.51 -
1.84% 

Maximum 
explosion 
Pressure 

Mpa 18.98 18.87 -
0.58% 
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Compression 
Ratio 

 3.61 3.67 1.66% 

Compressor 
Efficiency 

 84.24 83.15 -
1.29% 

Turbine 
Efficiency 

 86.24 87.06 0.95% 

Exhaust 
Temperature 
Front Turbine  

K 685.57 672.65 -
1.88% 

Exhaust 
Temperature 
After turbine 

K 520.24 510.63 -
1.85% 

Exhaust 
Pressure 
Front Turbine 

bar 3.46 3.52 1.73% 

Since this paper mainly conducts fault simulation 
under 100% load of 1# cylinder, it is necessary to 
correct the pressure change in 1# cylinder, and the 
results are shown in Figure 6. 

 

Figure 6. Pressure curve of 1# cylinder under 100% 
load 

As can be seen from Figure 6, the change of test 
value and simulation value is consistent, the error 
is small, and the simulation accuracy is high. This 
model can be used to simulate the fault diagnosis 
of diesel engine. 

The main object of fault research is the 
turbocharging system, and 6 states are selected for 
research, as shown in Table 3. The normal state is 
represented by Label F1. Select five faults of 
turbocharger and Label F2 to F6. Figure 4 shows 
the value range of faults in the simulation model. 

Table 3. Turbocharger status 

Lab
el 

F1 F2 F3 F4 F5 F6 

Sta
te 

Nor
mal 

Compre
ssor 
Fault 

Turbi
ne 
Nozz
le 
Ring 
Bloc
k 

Turbine 
Inefficie
ncy 

Turbi
ne 
Exha
ust 
Pipe 
Block 

Beari
ng 
Wear 

Table 4. The value range of faults in the simulation 
model 

Fault Parameter 
Set 
Value 

Fault 
Value 

Compressor 
Fault 

Compressor 
efficiency scaling 
factor 

1 0.8~0.95 

Turbine Nozzle 
Ring Block 

Turbine flow 
coefficient 

1 0.8~0.95 

Turbine 
Inefficiency 

Turbine efficiency 
scaling factor 

1.05 0.8~0.95 

Turbine 
Exhaust Pipe 
Block 

Outlet pressure 
/bar 

1.05 1.05~1.20 

Bearing Wear 
Turbocharger 
mechanical 
efficiency 

1 0.8~0.95 

The working state of diesel engine is determined by 
various parameters of diesel engine. These 
parameters include the main engine speed, power, 
fuel consumption, etc. It has the advantages of 
large amount of information and stable source. 

In this paper, 8 diesel engine thermal parameters 
related to turbochargers are selected as data 
features, and Label S1 ~ S8. Where, S1 is the 
boost pressure, S2 is the compressor outlet 
temperature, S3 is the turbine inlet temperature, S4 
is the turbine exhaust temperature, S5 is the 
turbine inlet pressure, S6 is the turbine exhaust 
pressure, S7 is the turbocharger speed, and S8 is 
the air mass flow rate. 

The analysis of thermal parameters mainly 
depends on the relative deviation of parameters, 
which can be expressed as: 

𝜀 =
𝑥𝑖 − 𝑥0

𝑥0
 (2) 



 

CIMAC Congress 2025, Zürich                Paper No. 374             Page 7 

 

Where, 𝑥0  is the parameter values under normal 
condition; 𝑥𝑖  is the parameter values under fault 
condition. 

This paper selects Latin hypercube sampling (LHS) 
method to collect fault samples. LHS is a random 
sampling technique designed to reduce 
correlations between input variables, thereby 
improving the accuracy of Monte Carlo simulations. 
It divides the value range of each component into 
the same interval, and randomly draws a value in 
each interval to ensure the randomness and 
uniformity of the sample. 

 

Figure 7. Latin hypercube sampling 

For the fault of the turbocharger, 0~5% of the set 
value in Table 4 is selected as the value of the 
normal state, and the range of 5%-25% of the 
deviation from the normal value is selected as the 
value range of the fault for simulation. LHS is used 
to select samples without overlapping for the six 
faults in Table 3. Select 50 samples of each state 
and construct a dataset of 300 samples. 

4 FAULT DIAGNOSIS MODEL 

The above fault data set is processed, the fault 
diagnosis model is constructed by using machine 
learning, and the dimensionality reduction of data 
samples is processed by using PCA, and the 
parameters of the fault diagnosis model are 
optimized by combining the optimization algorithm 
to obtain a high-precision model. 

4.1 Feature selection 

Feature selection is an important problem in feature 
engineering, whose goal is to find the optimal 
feature subset. Feature selection can eliminate 
irrelevant or redundant features, so as to reduce 
the number of features, improve model accuracy, 
and reduce running time. And a simplified model of 
truly relevant features is selected to help 
understand the process of data generation. 

PCA is used to extract the sample features, and the 
contribution rate of each component was calculated 
based on the maximum variance method. The 
component whose comprehensive contribution 
value is greater than 95% is selected as the main 
component. The composite score is calculated by 
the principal component, and the weight value of 
the index is obtained. 

The fault sample contains 6 fault types and 8 
feature parameters, and the weight value of each 
feature is analyzed according to PCA. Firstly, 
different fault samples are analyzed to screen out 
the main features. First, all the data were imported 
for principal component analysis to screen out the 
main features. Figure 8 shows the feature weights 
of the population sample. 

As can be seen from Figure 8, the weight of feature 
S7 and feature S8 is large, indicating that features 
contain more fault information. The weight of 
feature S3 is 0, so the feature has little correlation 
with the fault. 

 

Figure 8. Feature weight of PCA 

Next, the impact of 8 features on different 

faults is analyzed. Table 5 shows the feature 

weights of different faults. It can be seen from 

the table that the feature weights of different 

faults are different. In general, the weight 

distribution of each feature is similar to Figure 

3. The weight of feature S7 and feature S8 is 

larger, and the weight of feature S3 is the 

smallest. For fault F3, the weight values of 

multiple features are the same, indicating that 

the information distribution is relatively 

uniform. 

Table 5. Feature weights of different faults 

 S1 S2 
S
3 

S4 S5 S6 S7 S8 
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F
1 

2.43
9 

5.44
2 

0 
1.20

3 
2.77

0 
26.8
37 

30.6
60 

30.6
49 

F
2 

0.00
6 

26.6
79 

0 
0.00

9 
0.00

6 
18.8
33 

27.2
33 

27.2
33 

F
3 

15.8
52 

15.8
46 

0 
15.8
31 

15.8
51 

4.92
2 

15.8
52 

15.8
47 

F
4 

0.00
6 

0.00
4 

0 
0.01

0 
0.00

5 
13.4
55 

43.2
51 

43.2
69 

F
5 

0.00
1 

0.01
6 

0 
0.00

7 
0.00

0 
33.3
09 

33.3
19 

33.3
47 

F
6 

0.00
4 

0.00
4 

0 
0.01

0 
0.00

6 
13.4
56 

43.2
61 

43.2
59 

4.2 Construction of fault diagnosis model 
based on feature selection 

The 80% (240/300) samples of fault data were 
randomly selected as training samples and the rest 
as test samples. Table 6 shows the accuracy and 
F1-score of the four models. 

Table 6. The accuracy and F1-score of fault 
diagnosis models 

 SVM BP RF ELM 

Accuracy 96.67% 96.67% 91.67% 100% 

F1-score 0.964 0.965 0.903 1 

From Table 6, the accuracy of the model is similar 
to the value of F1-score. The accuracy of RF model 
is low, the accuracy is more than 91%. ELM has the 
highest accuracy and F1-score; In addition to the 
RF model, the accuracy of the other three models 
exceeded 96%, indicating that the sample features 
contained most of the information about the fault. 

 

Figure 9. Classification results of the four models 

As can be seen from Figure 9, there are differences 
in the fault class of misclassified samples. For the 
same sample, the BP model has more 
classification errors for class 1, the SVM model has 
more classification errors for class 4, and the RF 
model mainly concentrates on class 6. 

According to PCA results in Figure 8, the 
importance of eight features of fault data is 
determined, that is, S8 = S7 > S6 > S2 > S5 > S1 = 
S4 > S3. Through analysis, the greater the feature 
weight, the higher the importance of the feature and 
the more sample information contained. 

According to the weight order, different features are 
selected to construct the fault diagnosis model. 
Table 7 shows the results of fault diagnosis models 
constructed with different features. 

Table 7. The results of fault diagnosis models 
constructed with different features. 

  SVM BP RF ELM 

S7, 
S8 

Accuracy 56.67% 68.33% 56.67% 88.33% 

F1-score 0.537 0.669 0.558 0.883 

S6, 
S7, 
S8 

Accuracy 71.67% 85.00% 78.33% 93.33% 

F1-score 0.732 0.845 0.778 0.933 

S2, 
S6, 
S7, 
S8 

Accuracy 91.67% 96.67% 90.00% 100.00% 

F1-score 0.916 0.966 0.899 1 
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S2, 
S5, 
S6, 
S7, 
S8 

Accuracy 98.33% 96.67% 93.33% 100% 

F1-score 0.981 0.959 0.969 1 

From Table 7, the classification accuracy is low 
when there are fewer input features, indicating that 
a small number of features cannot effectively 
distinguish faults. With the increase of input 
features, the accuracy of classification and the F1 
score of the model are gradually improved. When 
the input features are S2, S6, S7, S8, the accuracy 
of BP and ELM exceeds 95%, indicating that 
features S2, S6, S7, S8 contain most of the fault 
information. When the input features are S2, S5, 
S6, S7, S8, the classification results are close to 
those in the table. Features S1, S3, and S4 have 
little correlation with fault samples. 

According to different faults, the features are 
selected to construct the mixed feature model of 
fault diagnosis. From Table 7, when the number of 
input features is 4, the accuracy of fault diagnosis 
model is improved, so the model with 3 input 
features is analyzed. 

Figure 10 shows the confusion matrix of the four 
results, in which there are more classification error 
samples for Faults F1, F2, F4 and F6. Fault 
characteristics S6, S7, and S8 of F1, F2, F4, and 
F6 have overlapping information and cannot be 
distinguished from faults. Therefore, it is necessary 
to add feature input appropriately or further 
distinguish faults. 

 

 

Figure 10. Confusion matrix of the four Few-feature 
models 

According to Table 5, the features are 
distinguished. For faults F1, F4, F5 and F6, S6, S7 
and S8 are used to construct the model. For faults 
F2 and F3, features S2, S7 and S8 are used for 
model construction. Fault diagnosis models with 
hybrid features are constructed respectively. Table 
8 shows the classification results of the four hybrid 
features models, and Figure 11 shows the 
confusion matrix of the results. 

Table 8. Accuracy and F1-score of hybrid features 
models 

 SVM BP RF ELM 

Accuracy 68.33% 76.67% 91.67% 98.33% 

F1-score 0.673 0.749 0.917 0.983 

According to Table 7 and Table 8, by distinguishing 
the input characteristics of different faults, the 
classification accuracy of SVM model and BP 
model is reduced, while the classification accuracy 
of RF model and ELM model is improved. 

 

 

Figure 11. Confusion matrix of hybrid features 
models 

Compared with Figure 10, by distinguishing input 
features, the error classification samples of faults 
F1, F2, F4 and F6 are reduced. The number of error 
classification samples of RF model and ELM model 
is reduced, and the accuracy is improved. 
However, for SVM model and BP model, the error 
classification samples of fault F5 increase, resulting 
in a decrease in the overall accuracy. 
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4.3 Construction of hybrid feature model 

According to the feature importance of different 
problems, PCA can screen out the main features of 
different faults, eliminate the redundant features, 
and simplify the model. Distinguishing input 
features can reduce the number of misclassified 
samples and improve the accuracy of classification 
to a certain extent. In order to further improve the 
accuracy of the fault diagnosis model, an 
optimization algorithm is used to optimize the 
parameters of models. Combined with optimization 
algorithm, a new construction method of fault 
diagnosis hybrid feature model is proposed. The 
process is shown in Figure 12. 

 

Figure 12. Flowchart of fault diagnosis hybrid 
model construction 

The construction method of fault diagnosis hybrid 
feature model is as follows: 

Step 1: Obtain the fault data of the diesel 
turbocharger, collect the corresponding thermal 
parameters, and build the fault data set. 

Step 2: Use PCA to extract the main components 
of fault features, and the feature weights are 
calculated according to the total contribution rate. 

Step 3: Filter the main features of different faults 
according to the feature weight. The fault diagnosis 
model is constructed and the results are analyzed. 

Step 4: Optimize the parameters of the model using 
the optimization algorithm to further improve the 
classification accuracy of the model. 

Step 5: Export the fault diagnosis hybrid feature 
model. 

In machine learning, the optimizer is a crucial 
component. It is responsible for adjusting the 
parameters of the model during model training to 
minimize or maximize a certain loss function. The 

goal of the optimizer is to find a set of parameters 
such that the error between the model predictions 
on a given data and the actual results is minimal. In 
this paper, particle swarm optimization (PSO) was 
used to optimize the parameters [19-20]. 

Table 9 shows the optimized classification results 
of the four models with input feature 3. Compared 
with Table 8, it can be seen that the classification 
accuracy of SVM model and BP model has been 
effectively improved, while the parameters of RF 
model and ELM model are already optimal. 

Table 9. Classification results of the optimized 
hybrid features models 

 SVM-OPT BP-OPT RF-OPT ELM-OPT 

Accuracy 80.00% 86.67% 91.67% 98.33% 

F1-score 0.793 0.749 0.917 0.983 

Figure 13 shows the classification results of the 
Few-feature (FF) model, Hybrid features (HF) 
model and Hybrid feature model after optimization 
(HF-OPT). As can be seen from the figure, 
compared with FF model and HF model, HF-OPT 
model can effectively reduce the misclassified 
samples and improve the accuracy. Among the four 
machine learning algorithms, RF model and ELM 
model have stronger sample processing ability and 
higher model precision. 

 

Figure 13. Comparison of accuracy of the three 
models 

6 CONCLUSION 

This paper analyzes the typical faults of 
turbochargers, and obtains the fault samples of 
turbochargers through simulation models. The fault 
diagnosis model of turbocharger is constructed by 
using machine learning. In this paper, a hybrid 
feature fault diagnosis model construction method 
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is proposed by combining PCA and optimization 
algorithm. 

(1) Feature selection based on PCA can effectively 
eliminate redundant features. In the case of 
ensuring the high accuracy of classification results, 
the fault diagnosis model is simplified. In the eight 
features of turbocharger in this paper, the accuracy 
of fault diagnosis model can reach 96% by inputting 
four main features. 

(2) The main impact features of different faults are 
different. By distinguishing the input features of 
different fault samples, the number of misclassified 
samples can be effectively reduced. The accuracy 
of fault diagnosis model is further improved by 
reducing the impact of irrelevant features. 

(3) With the reduction of input features, the model's 
ability to classify fault samples decreases. The 
hybrid feature fault diagnosis model can improve 
the classification ability of fault samples under a 
small number of input features. 
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