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ABSTRACT

The simulation test for rotor imbalance faults in turbochargers has high costs and may bring
destructive risks to the entire machine. At the same time, the variable speed working characteristics of
turbochargers bring great difficulties in fault diagnosis. Regarding the above issues, a certain marine
turbocharger is taken as an object in the paper, and finite element models are established in both fluid
and solid domains. By setting the boundary conditions from the experimentation and design of the
turbocharger, the fluid excitation forces at the turbine and compressor are calculated using Fluent
software. The comprehensive vibration response model of the turbocharger is established using the
modal reduction and rotor dynamics analysis based on Workbench software. Experimental vibration
data from the base of the turbocharger under normal operating conditions are collected and compared
with simulation results to validate the model. Dynamic unbalanced faults of the rotor are simulated
using a model reconstruction approach at various speeds, and the patterns of vibration responses at
different fault severities are analyzed. Characteristic parameter datasets for rotor unbalanced vibration
in both the source and target domains are simulated and extracted. The convolutional neural network
(CNN) model is established based on the vibration data from the base of the turbocharger and pre-
trained using data from the source domain. The Maximum Mean Difference (MMD) is measured for
the feature distribution distance between the source and target domains at each layer of the pre-
trained model. The effectiveness of convolutional layer and fully connected layer migration is
determined by MMD. The model is trained again using the labeled target domain data to classify and
identify fault data in the target domain. The study demonstrates that the error of the established
turbocharger vibration response simulation model is within 5%, the method based on the CNN transfer
learning model can effectively diagnose the degree of rotor imbalance under variable speed operating
conditions of the turbocharger and has a high diagnostic accuracy.
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1 INTRODUCTION 
As one of the indispensable core components of 
marine power systems, the turbocharger utilizes 
the energy from the exhaust gases expelled by the 
engine to drive the turbine, which in turn drives the 
compressor impeller coaxial with the turbine to 
rotate at high speed, thus improving the engine's 
efficiency. At the same time, the compressor 
compresses air into the engine cylinders, 
increasing the amount of air, which allows for more 
efficient fuel utilization and enhances the engine's 
power.  

A recent survey by the Swedish Club on claims 
related to marine engine damage highlighted that 
turbocharger failures account for a significant 
proportion, representing 27.34% of all engine 
failures [1]. The rotor, essential to the turbocharger, 
is pivotal in ensuring operational stability. 
Imbalances in the rotor can originate from several 
factors: disparities in material quality, errors during 
manufacturing and installation, as well as 
operational challenges such as thermal 
deformation, wear, and media adhesion. 
Collectively, these elements lead to the inertia shaft 
of rotor inevitably deviating from the rotational axis 
[2]. The phenomenon of rotor unbalanced can 
affect the stability and lifespan of the turbocharger 
itself, leading to unstable compressed air flow and 
pressure, thereby reducing the power output and 
fuel efficiency of the marine engines. Therefore, 
timely diagnosis of rotor imbalance fault is of great 
significance to ensure the dynamic performance of 
the turbocharger and enhance the performance 
and reliability of the marine engine. 

Both at home and abroad, the phenomenon of rotor 
imbalance is studied extensively. Ahobal et al. 
conduct a harmonic analysis of the rotor imbalance 
vibration signals, revealing that the rotor system 
exhibits different response characteristics in 
response to various unbalanced masses [3]. 
Knotek et al. investigate the impact of imbalance 
magnitude on the dynamic behavior of the 
turbocharger rotor through simulation [4]. Bin et al. 
construct a finite element solid model of the 
turbocharger rotor-bearing system, which is used to 
determine the optimal configuration scheme for the 
imbalance excitation on the rotor [5]. In summary, 
research on the influence law of turbocharger rotor 
imbalance is relatively mature both domestically 
and internationally. However, there is a lack of 
research concerning the diagnosis of rotor 
unbalanced faults. 

Accordingly, this paper establishes a vibration 
response model for the complete marine 
turbocharger system, based on the analysis of a 
certain marine turbocharger. This model is 
employed to simulate the rotor imbalance fault, 

aiding in the analysis of the variations in the 
turbocharger's vibration response under different 
speeds and fault severities. Furthermore, a one-
dimensional convolutional neural networks (CNN) 
transfer learning algorithm is devised to diagnose 
fault vibrations in the rotor imbalance of the 
turbocharger. 

2 THE ESTABLISHMENT OF THE 
VIBRATION RESPONSE MODEL FOR 
MARINE TURBOCHARGER SYSTEM 

2.1 Division of finite element mesh  
The turbocharger is mainly divided into the shell 
and rotor. To satisfy the simulation requirements for 
the vibration response of the turbocharger, the 
three-dimensional solid domain models of the shell 
and rotor are geometrically cleaned by Hypermesh. 
The removal of technological features, such as 
bosses, oil holes, fillets, and chamfers, is 
conducted as part of the geometric cleaning 
process, which has minimal impact on the overall 
vibration of the turbocharger. Subsequently, the 
fluid domain is extracted from the solid domain on 
the basis of the turbocharger's operating principles. 
The final finite element model is shown in Figure 1, 
in which a first-order tetrahedral mesh is employed 
to discretize the geometric models of both the solid 
and fluid domains. The solid domain comprises 
approximately 489,500 elements, while the fluid 
domain contains around 25,824,400 elements. The 
mesh types employed are Solid185 for the solid 
domain and Shell181 for the fluid domain. 

     
(a) Solid element model  (b) Fluid element model 

Figure 1. Finite element model of the turbocharger 

2.2 Calculation of fluid excitation 
A flow field analysis model of the turbocharger is 
constructed using Ansys Fluent with the objective 
of calculating the transient fluid excitation on the 
casing, as shown in Figure 2. The transient solution 
is set with 1,800 time steps, where each time step 
corresponds to a 1° rotation of the rotor. In order to 
guarantee convergence at each step, the maximum 
number of iterations per step is set to 20. The 
convergence criterion for the calculation is that the 
root mean square (RMS) residual must be less than 
10-4. Once the transient solution is completed and 
the results are confirmed to have converged, the 
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excitation in each direction is output. Figure 3 
depicts the variation of the turbocharger fluid 
excitation over a cycle concerning the iteration 
steps when the rotor speed is 60,000 rpm. 

     
(a)Turbine                        (b)Compressor 

Figure 2. Turbocharger flow field fluid mechanics 
model 

  
(a)Turbine 

  
(b)Compressor 

Figure 3. Time-domain excitation of the 
turbocharger fluid domain 

2.3 Transient vibration response analysis 
and model validation 

A transient dynamic model of the entire 
turbocharger is constructed using the Transient 
Structural module in Ansys Workbench. The 
connections, constraints, and load boundary 
conditions between the components of the 
turbocharger are defined in accordance with 
established engineering practice. A fixed time step 
method is employed to define the simulation 

parameters, and vibration response calculations 
and analysis of the turbocharger are conducted to 
obtain the vibration responses of the turbocharger 
components and the machine feet, as shown in 
Figure 4. 

 
Figure 4. Vibration acceleration contour map of the 
turbocharger 

In order to guarantee the precision of the simulation 
model for the vibration response of the marine 
turbocharger assembly, vibration tests of the 
turbocharger machine feet under standard 
operational conditions are carried out on the 
turbocharger performance test bench. The veracity 
of the model is substantiated through a 
comparative analysis of the simulation data with the 
experimental data under standard operational 
conditions. In view of the challenging working 
environment of the turbocharger, which is 
characterised by elevated noise levels, a robust 
data extraction methodology is employed with a 
view to extracting meaningful insights from the 
experimental data, minimising the impact of noise 
interference and enhancing the precision of the 
analysis. This is accomplished through the 
elimination of outlier data in accordance with the 
three-sigma criterion. Furthermore, a low-pass filter 
is utilised to remove frequencies that fall outside 
the sensor's measurement range from the signal.  

The experimental and simulation data pertaining to 
the vibration acceleration signal of the engine 
mount under normal operating conditions are 
extracted and subjected to comparison, as shown 
in Figure 5 and Table 1. 

 
(a)Engine mount vibration acceleration time 
domain signal comparison 
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(b)Engine mount power spectral density 
comparison 

Figure 3. Comparison of turbocharger vibration 
response signals under normal operating 
conditions at 60,000 rpm 

Table 1. Comparison of turbocharger vibration 
response signal characteristics under normal 
operating conditions at varying speeds 

Speed
(r/min) Feature type Measured 

data 
Simulated 

data 
Error 
(%) 

35000 
RMS/(m/s2) 3.73 3.72 0.27 
Peak1/(m/s2)  16.55 15.92 3.81 

Frequency2/Hz 992 1000 0.81 

40000 
RMS/(m/s2) 6.12 5.87 4.09 
Peak1/(m/s2)  28.28 28.53 0.88 

Frequency2/Hz 1014 1000 1.38 

45000 
RMS/(m/s2) 7.56 7.46 1.32 
Peak1/(m/s2)  31.98 32.52 1.69 

Frequency2/Hz 1017 1000 1.67 

50000 
RMS/(m/s2) 12.47 12.03 3.53 
Peak1/(m/s2)  52.73 51.55 2.24 

Frequency2/Hz 986 1000 1.42 

55000 
RMS/(m/s2) 19.61 19.72 0.56 
Peak1/(m/s2)  63.57 63.34 0.36 

Frequency2/Hz 979 1000 2.15 

60000 
RMS/(m/s2) 29.01 28.69 1.10 
Peak1/(m/s2)  92.98 96.96 4.28 

Frequency2/Hz 1035 1000 2.38 
1Peak-to-peak  
2PSD max peak frequency 

It can be observed that, in the time domain the 
signal of the base vibration, along with the 
calculated vibration characteristics such as RMS 
and peak-to-peak values, are generally consistent 
with the measured results, with a maximum error of 
4.28%. In the frequency domain, the measured and 
simulated PSD demonstrate a high degree of 
correlation between the fundamental frequency 
and its associated harmonic peak frequencies. The 
maximum peak is observed to occur near the 
fundamental frequency in both cases. In 
conclusion, the accuracy of the turbocharger 
vibration response model is relatively high, which 
can provide valuable guidance for fault diagnosis 
research. 

3 ROTOR UNBALANCE FAULT 
SIMULATION ANALYSIS 

3.1 Fault simulation modelling method 
Due to the high rotational speed of the turbocharger 
rotor, the asymmetric mass distribution generates 
centrifugal forces when the rotor rotates at high 
speeds, causing significant vibrations in the 
turbocharger. To better simulate the actual rotor 
unbalance fault condition, an unbalance force is 
introduced and the calculation formula is as follows: 

2F = meω                                                             (1) 

The unbalanced force in the rotor system, not 
including the shaft, is projected in two directions 
(in this case the Y-axis and the Z-axis direction) 
as follows: 

�00
( )
( )

2
y

2
z

F = meω cos ωt

F = meω sin ωt
                                          (2) 

In Eq.1 and Eq.2, F is the unbalanced force in N; m 
is the unbalanced mass in g; e is the eccentricity 
between the unbalanced mass and the center of 
rotation in mm; ω  is the rotational speed of the 
rotor system in rad/s；t represents a specific time 
during the rotation of the rotor system in s. 

From Eq.2, it can be seen that the effect of 
unbalance is equivalent to the application of two 
mutually perpendicular harmonic forces along the 
Y and Z directions of the rotor axis. Therefore, to 
simulate the rotor unbalance fault, the unbalance 
forces Fy and Fz in the two perpendicular directions 
are applied to the equivalent axis of the rotor 
system at the node with no weight, thereby 
achieving the simulation of rotor unbalance errors. 

3.2 Rotor imbalance fault simulation 
analysis 

In the actual manufacture and operation of rotor 
systems, various factors always result in the rotor 
not reaching a perfectly ideal state, so there will 
always be some degree of imbalance. Through 
actual measurements, it is found that the rotor 
imbalance of this turbocharger under normal 
operating conditions is 3g·mm. 

In order to better describe the extent of rotor 
imbalance faults, experience is shown that rotor 
imbalance faults are divided into three categories: 
normal operating conditions, minor faults, and 
major faults. It is assumed that the rotor imbalance 
is 9 g-mm under minor fault conditions and 15 g-
mm under severe fault conditions. Using the 
method of applying the rotor imbalance force 
described above, a study is made of the variation 
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of the vibration response at the compressor foot 
under different rotor speeds and fault severity 
levels. The results of the simulation analysis are 
shown in Figure 6-7. 

 
(a)RMS value variation pattern  

 
(b)Peak-to-Peak value variation pattern 

Figure 6. Variation of vibration characteristics at the 
compressor foot under different states and 
rotational speeds 

 
Figure 7. Variation of the maximum peak of PSD at 
the compressor foot under different states and 
rotational speeds 

Figure 6 shows that as the speed increases and the 
fault severity increases, both the peak-to-peak 
value and the RMS value of the vibration 
acceleration at the base of the turbocharger also 
increase, with the rate of increase becoming more 
pronounced. In addition, the power spectral density 
analysis of the base of turbocharger vibration at 
different speeds and fault severities shows that 
rotor imbalance faults generate distinct peaks in the 
frequency spectrum, with the maximum peak 
always corresponding to the fundamental 
frequency. This is because the periodic vibration 
induced by the unbalanced force is directly related 
to the speed of rotation, resulting in a concentration 
of energy at the corresponding frequency. Other 
harmonic components, such as the second 
harmonic, fifth harmonic, etc., may also appear, but 
their amplitudes are generally smaller than those of 

the fundamental frequency. As shown in Figure 7, 
it can be observed that as the speed and severity 
of the fault increase, the maximum peak 
corresponding to the fundamental frequency in the 
power spectral density also increases accordingly. 

4 DIAGNOSIS OF COMPRESSOR 
ROTOR IMBALANCE FAULT BASED 
ON 1D-CNN TRANSFER LEARNING 

4.1 Construction of 1D-CNN model and 
transfer learning 

CNN, as a typical deep learning architecture, has 
powerful capabilities in data mining and information 
fusion, and is therefore very promising in the fields 
of feature extraction and multi-source information 
fusion, and has significant application and research 
potential [6-9]. 

The 1D-CNN is mainly used for data classification. 
Its basic structure consists of the following layers: 
input layer, convolutional layer, activation function, 
pooling layer, fully connected layer, and output 
layer. The structure of the 1D-CNN model 
constructed in this paper is shown in Figure 8. The 
activation function of the convolutional layers is 
ReLU and the activation function of the output layer 
is Softmax. The convolutional kernels used are 
large, which helps to extract short-term features, 
provide more information to the deeper layers of 
the network, and better suppress high-frequency 
noise. During backpropagation, the Adam 
optimization algorithm is used to adaptively adjust 
the learning rate to optimize the parameters of the 
network model, thereby obtaining the optimal 
parameter values and ensuring that the loss 
function L is minimized. 

 
Figure 8. Structure of the 1D-CNN model 

The fault diagnosis method based on CNN models 
has already achieved good diagnostic results in the 
field of rotating machinery fault diagnosis. 
However, its implementation requires meeting two 
conditions: 1) a sufficiently large amount of sample 
data; and 2) data that is independent and identically 
distributed. In practical applications, due to the high 
cost, significant risks, and the difficulty of 
diagnosing variable speed conditions in rotor 
imbalance fault simulation tests for marine 
turbochargers, the actual rotor imbalance vibration 
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data obtained is often difficult to meet the two 
conditions mentioned above. This directly affects 
the accuracy of fault diagnosis. To overcome the 
limitations of the CNN-based fault diagnosis 
method, this paper introduces a transfer learning 
strategy and proposes a new fault diagnosis 
method, as shown in Figure 9. Transfer learning 
breaks the assumption that the training and test 
data in CNN-based fault diagnosis come from the 
same distribution, while also addressing the 
problem of insufficient training samples [10-12]. 

During the transfer process, Maximum Mean 
Discrepancy (MMD) is used to measure the 
distance between the feature distributions of the 
source and target domains. Assume there are two 
sets of data, { }= 1 2 nX x ,x , ,x  and

{ }= 1 2 mY y ,y , ,y , that follow different 
distributions. The MMD calculation formula 
between X and Y is as follows: 

( ) ( ) ( )∑ ∑
2n m

i j
i=1 j=1 H

1 1MMD X,Y = φ x - φ y
n m

              (3) 

In the Eq.3,  
H

is RKHS； ( )φ  is the function 
used to map the original variables to the RKHS. 

 
Figure 9. Fault diagnosis process of compressor 
rotor imbalance based on CNN transfer learning 

4.2 Selection of simulation fault dataset for 
rotor imbalance 

The classification results do not meet the expected 
performance when the time-domain simulation 
signals of the turbocharger are directly used to train 
the CNN model. Therefore, considering the 
physical significance of the time-domain and 
frequency-domain feature parameters at eight 
measurement points on the base of the 
turbocharger under six different speeds and three 
fault levels, as well as their variations with speed 
and fault conditions, the features most sensitive to 

fault classification and containing the highest 
information content are selected. At the same time, 
the performance of the features at different 
measurement points is evaluated. By comparing 
the signal quality and feature stability, the points 
with the most representative information are 
selected. 

To overcome non-stationarity, capture local 
variations, and improve generalization, the 
simulated time-domain data are segmented into 
fifty segments of five seconds each. The final 
selected fault-sensitive features are mean 
amplitude, RMS value, and standard deviation, 
from measurement points 2, 4, and 6. Figure 10 
shows that these are more sensitive to fault 
changes at point 6. Finally, the data set is split as 
shown in Table 2. 

 
(a)Average amplitude       (b)Centroid frequency 

 
(c)RMS                             (d)Frequency variance 

 

(e)Standard deviation        (f)Kurtosis 

Figure 10. Variation of feature parameters at 
measurement point 6 with speed and fault 
conditions 

Dataset A is employed as the source domain, with 
datasets B, C, D, E, and F serving as the target 
domains. Each dataset comprises one hundred 
and fifty feature data points. The data is labeled 
according to the rotor imbalance fault types: the 
normal operating condition is labeled as 1, minor 
fault as 2, and severe fault as 3. The source and 
target domains are divided into test and training 
sets, with the results presented in Table 3. 
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Table 2. Composition of the dataset 

Data 
set 

Speed 
(r/min) 

Degree of rotor 
imbalance fault 

Characteristic 
samples 

A 60000 
Normal 50 
Minor 50 

Severe  50 

B 55000 
Normal 50 
Minor 50 

Severe  50 

C 50000 
Normal 50 
Minor 50 

Severe  50 

D 45000 
Normal 50 
Minor 50 

Severe  50 

E 40000 
Normal 50 
Minor 50 

Severe  50 

F 35000 
Normal 50 
Minor 50 

Severe  50 

Table 3. Dataset split 

Source domain    A Target domain  B/C/D/E/F Tab 
Normal condition Normal condition 

1 
10 40 40 10 

Minor faults Minor faults 
2 

10 40 40 10 
Severe faults Severe faults 

3 
10 40 40 10 

Test Set Training Set Test Set Training Set 
--- 

30 120 120 30 

4.3 Diagnostic performance analysis 
4.3.1 Pre-training of the 1D-CNN model 
The source domain dataset A is employed for the 
pre-training of the 1D-CNN model that has been 
constructed. To minimize the impact of 
randomness in the training results, each training 
session is conducted twenty times, and the 
average of the results is taken. The model exhibits 
an average accuracy of 100% for the diagnosis of 
rotor unbalanced faults, as illustrated in Figure 11. 

 

Figure 11. Fault diagnosis results of the CNN 
model in the source domain 

4.3.2 Fault diagnosis based on the transfer 
model 

Retaining the network structure and weight 
parameters of the fully trained CNN model. The 
maximum mean difference between the source and 
target domains on each convolutional and fully 
connected layer is calculated. A migration model is 
constructed and trained using the target domain 
data. Finally, the features extracted from the last 
layer of the migration model are mapped to a two-
dimensional feature vector using the T-SNE 
algorithm. The transfer model, which is established 
based on the rotor imbalance fault dataset A at 
60,000 rpm, is subsequently applied to the rotor 
imbalance fault diagnosis results of the other 
datasets B, C, D, E, and F at different speeds. The 
results of the fault diagnosis and the results of the 
reduction in the dimensionality of the features are 
presented in Figure 12 and Figure 13. 

 
(a)Dataset B                        (b)Dataset C 

 
(c)Dataset D                        (d)Dataset E 

 
(e)Dataset F 

Figure 12. Fault diagnosis results of the transfer 
model based on rotor imbalance fault dataset A 

 
(a)Dataset B                        (b)Dataset C 
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(a)Dataset D                        (b)Dataset E 

 
(e)Dataset F 

Figure 13. Feature visualization of the transfer 
model based on rotor imbalance fault dataset A 

Figure 12 and Figure 13 show that the transfer 
model has 100% fault diagnosis accuracy for rotor 
imbalance at 55,000 to 40,000 rpm. The 
characteristics of varying fault severities are 
discernible. For dataset F at 35,000 rpm, the fault 
diagnosis accuracy is 98.33% and some normal 
operating condition features are misclassified as 
mild faults. Overall, the transfer model presented in 
this paper exhibits notable adaptability in 
addressing rotor imbalance fault diagnosis for 
turbochargers across diverse operational speeds 
and fault severities. The model demonstrates a 
high degree of accuracy in fault diagnosis, with an 
average accuracy of 99.67%. 

5 CONCLUSIONS 
(1) The transient vibration response simulation 
model of the marine turbocharger is constructed. 
The characteristic parameters of the time-domain 
and frequency-domain vibration signals between 
the simulation and measurement of the 
turbocharger substructure under normal working 
conditions is compared and analyzed, and the 
errors of the comparison are no more than 5%, 
which demonstrate that the turbocharger vibration 
response simulation model is highly accurate and 
can be used to simulate and predict rotor failure. 

(2) With the turbocharger speed increasing and the 
rotor imbalance exacerbated, the peak-to-peak 
value, root mean square value, and fundamental 
frequency peak value of the vibration acceleration 
at the base of the turbocharger all rise significantly, 
with the rate of increase continually growing. The 
patterns provide a basis for the selection of 
characteristics for fault diagnosis under variable 
operating conditions of the rotor. 

(3) The transfer learning model of 1DCNN, based 
on the maximum mean difference criterion, 
achieves an accuracy of no less than 98.33% for 
fault classification recognition. It indicates that the 
model has strong adaptability across different 
operating conditions. It can serve as a reference for 
research into fault diagnosis technology for 
turbochargers under variable operating conditions. 
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