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ABSTRACT

With the increasing demand for smart factory solutions in engine manufacturing, HD Hyundai Heavy
Industries (HHI) has successfully implemented an integrated data acquisition system at the HiMSEN
production plant. This system facilitates real-time data collection, structured storage, and analysis,
supporting the digital transformation of production environments. By leveraging network technologies,
industrial protocols, PLCs, and IoT, a streaming pipeline was developed to enable seamless data
integration across various testbeds.

To further enhance digital knowledge management, NEMOS (NOx Emission Management &
Optimization System) was introduced, addressing the limitations of manually recorded data. This
system provides an intuitive operator interface, automates data entry through BOM integration, and
enables real-time emission monitoring. Additionally, a stream processing server was implemented to
synchronize emission data with engine operation parameters, allowing for accurate NOx compliance
evaluations based on MARPOL Annex VI standards.

The collected data is utilized for predictive modeling and performance optimization, with applications
such as HiBRAIN and Emission Analyzer Remote Control assisting in reducing operator workload and
improving research collaboration. Analysis of emission prediction models has demonstrated the
system’s capability to track exhaust gas trends and optimize operational strategies, though further
validation under diverse conditions is necessary.

This digitalization initiative is expected to accelerate the transformation of other HHI engine plants,
enabling comprehensive operational and environmental data collection. These advancements will
support the development of eco-friendly engines, enhance regulatory compliance, and drive
continuous improvements in HiMSEN engine technology, reinforcing HHI’s leadership in smart
manufacturing and sustainable engineering.
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1 INTRODUCTION 

Since the initial production of the H21/32 type in 
2001, HD Hyundai Heavy Industries (HHI) 
proprietary HiMSEN engine has reached a 
cumulative production of 15,000 units as of 2024, 
establishing itself as the market leader in the 
medium-speed engine sector for marine auxiliary 
power generation, with a 35% global market share 
(Figure 1). Leveraging decades of technical 
expertise and manufacturing experience, HiMSEN 
engines are exported to over 60 countries 
worldwide, ensuring stable performance tailored to 
diverse environmental conditions and operational 
requirements.  

 

Figure 1. HiMSEN Engine Assembly & Test Shop 

With the continuous increase in annual order 
volume, a significant number of four-stroke 
medium-speed HiMSEN engines, primarily dual-
fuel engines, and two-stroke propulsion engines 
are scheduled for production this year, as 
illustrated in Figure 2. These units undergo 
commissioning and verification processes by the 
manufacturer before delivery, which are generally 
classified into “Shop Test” and “Sea Test”. The 
Shop Test is conducted before onboard installation 
to verify that the engine conforms to design 
specifications, including engine power, safety 
against fire, compliance with approved limits such 
as maximum pressure, and overall functionality[1].  

 

Figure 2. HiMSEN DF Engine Annual order & 
cumulative total order (As of Oct, 2022) 

In particular, the Official Shop Test serve as 
foundational documentation for customers and act 
as a primary reference for future technical support. 
These results are essential for evaluating the 
performance status of onboard engines, providing 
a baseline for comparison with official shop test 
data at certain load and speeds levels. 
Furthermore, they play a crucial role in detecting 
abnormalities, as alarm and fault thresholds are 
configured to identify deviations that exceed 
predefined criteria. 

Among the most critical aspects of the Shop Test 
in a mass-production environment is the ability to 
accommodate testing procedures within the 
constraints of the engine shipment plan. To ensure 
thorough validation, each engine's testbed 
occupancy is carefully managed based on the 
production schedule. During the allocated test 
period, comprehensive evaluations are conducted, 
including fuel consumption under various load 
conditions, emission measurements in accordance 
with IMO-regulated Tier levels (Tier I, II, and III), 
fuel mode transitions between gaseous and liquid 
fuels specific to dual-fuel engines, validation of 
NOx reduction performance via Selective Catalytic 
Reduction (SCR) systems, and MSS tuning 
operations[2,3]. To support these procedures, 
various standalone measurement devices are 
installed and operated on-site, each designed to 
capture specific parameters and display them 
locally via HMI or dedicated interfaces. The data 
collected from each device is then integrated and 
analyzed to generate official baseline performance 
datasets, which are delivered to customers as the 
primary reference for the corresponding engine. 

In particular, recent years have seen a growing 
market demand for engines that not only comply 
with increasingly stringent international regulations 
but also deliver high output and operational 
efficiency. In this context, the ability to design and 
supply such advanced engines has become a 
critical differentiator among engine manufacturers. 
In response, HHI is actively developing next-
generation engines powered by alternative fuels 
such as methanol and ammonia, aiming to meet 
future regulatory standards while maintaining high 
performance. Concurrently, extensive efforts are 
being made to conduct in-depth analysis of 
operational data from mass-produced HiMSEN 
engines. These analyses focus on identifying 
correlations among key performance indicators 
within the complex engine system, with the ultimate 
goal of deriving optimal control parameters. The 
outcomes of these initiatives are expected to 
contribute significantly to achieving higher 
efficiency, stable engine operation, and enhanced 
customer trust. 
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While conventional simulation methods and model-
based system approaches remain effective for 
analyzing core engine performance, they often fall 
short when applied to emission-related 
phenomena, such as the generation and fluctuation 

of NOx and CH₄. This is primarily due to the highly 

nonlinear and variable nature of exhaust 
emissions, which are influenced by a multitude of 
interacting parameters and exhibit significant 
sensitivity to even minor variations in operating 
conditions. As a result, HHI has adopted data-
driven methodologies to better capture the complex 
behaviors of emission formation during engine 
operation. By leveraging large volumes of time-
series data acquired from mass-produced engines 
under various load and fuel conditions, machine 
learning and statistical modeling techniques are 
applied to identify hidden patterns and correlations 
between emission levels and key performance 
indicators. These efforts enable more accurate 
prediction of emissions under real-world conditions 
and support the derivation of optimal operational 
parameters that ensure both regulatory compliance 
and performance efficiency. In an environment of 
tightening IMO emission standards, such as those 
defined under MARPOL Annex VI, this data-centric 
approach has become essential for achieving 
sustainable and certifiable engine operation across 
a wide range of applications. 

To support such data-driven emission analysis, the 
availability of high-resolution, real-time operational 
data has become increasingly critical—particularly 
during the Shop Test phase, where precise 
evaluation of engine behavior under varying load 
and fuel conditions is essential. Unlike static 
performance reports, real-time data captures the 
dynamic characteristics of engine operation, 
enabling more accurate assessments of emission 
trends, performance stability, and compliance with 
regulatory thresholds. However, earlier attempts to 
implement such data acquisition were constrained 
by the absence of a centralized and scalable 
infrastructure. In many cases, data was collected 
through isolated and heterogeneous systems, 
resulting in fragmented datasets that lacked 
consistency, traceability, and long-term usability. 
These limitations significantly hindered efforts to 
conduct holistic performance evaluations or to 
develop predictive models that reflect actual field 
conditions. Recognizing these challenges, HHI has 
focused on building an integrated data framework 
capable of aggregating and synchronizing real-time 
data streams from multiple on-site measurement 
devices, thereby enhancing the quality and utility of 
data for advanced analytics and optimization.  

Recent technological advancements have 
facilitated the development of centralized data 
infrastructure, accelerating the shift toward 

digitalization and enabling industries to adopt 
automation, artificial intelligence (AI), and data 
management solutions [4]. The integration of smart 
sensors, data acquisition systems, Internet of 
Things (IoT), and cloud computing has played a 
crucial role in collecting operational data across 
sectors and optimizing data transmission to 
secured intranet networks. Once centralized, the 
integrated engine operation data ensures real-time 
accessibility, sustainability, and seamless 
availability for both field operators and engine 
research institutions[5]. By conducting in-depth 
analyses of this data, researchers can accelerate 
product development and identify key operational 
parameters for existing engines to enhance 
performance and efficiency. This data-driven 
interaction between the commissioning and 
research team fosters continuous improvement, 
while the early detection and prevention of potential 
operational issues help reduce workload and 
enhance overall operational reliability in the field. 

This paper presents the deployment of an 
integrated data acquisition system established at 
the HiMSEN Production Plant to support digital 
transformation efforts in large-scale engine 
manufacturing. The system is based on a PLC-
controlled hardware infrastructure, enabling 
reliable and structured collection of data from 
various engine testbeds and auxiliary systems via 
wired connections. This unified field-level system 
allows real-time operational data—including 
performance, control, and safety metrics—to be 
collected consistently during the mass production 
of HiMSEN engines. The data acquisition system 
serves as a foundational layer for advanced 
monitoring, performance validation, and regulatory 
compliance across a wide range of engine types 
and power ratings. 

In parallel with field-level integration, a 
complementary digital service platform, NEMOS 
(NOx Emission Management & Optimization 
System), has been developed to extend 
accessibility and usability of production data 
beyond the physical boundaries of the shop floor. 
NEMOS consolidates data not only from the 
HiMSEN Production Plant but also from external 
remote facilities in real time, enabling researchers 
and engineers to monitor, analyze, and collaborate 
on engine behavior and emissions trends across 
multiple locations. This system bridges the gap 
between production and research, enhancing 
transparency and accelerating data-driven 
decision-making for engine design, tuning, and 
validation. 

Furthermore, this study demonstrates how the 
integrated data collected through the smart factory 
infrastructure is applied to real-world engine 
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analysis and optimization. In particular, an MSS 
tuning model was developed and validated using 
operational data from mass-produced engines, 
yielding meaningful results in identifying optimal 
control settings that balance emission reduction 
and performance stability. Based on these findings, 
further refinement through additional data analysis 
and model enhancement is planned. The finalized 
service will be integrated into the NEMOS platform, 
enabling engineers to access intuitive, data-driven 
tools that support real-time decision-making and 
advanced tuning in the field. 

2 HIMSEN PRODUCTION PLANT DATA 
ACQUISITION SYSTEM 

As global manufacturing trends shift towards 
digitalization and data-driven optimization, mass-
production environments are increasingly adopting 
smart technologies to improve operational 
efficiency and product quality. At the HiMSEN 
Production Plant, a comprehensive digital 
transformation has been successfully implemented 
to enhance engine assembly and testing 
processes. This transformation integrates real-time 
data collection, intelligent monitoring systems, and 
centralized data management, creating a scalable 
foundation for a smart factory. The following 
section outlines the structure and key features of 
this digital architecture, highlighting how it supports 
high-volume production while maintaining 
adaptability and precision. 

2.1 Engine Data Collection with IoT Platform  

Ship engines are produced under a high-mix, low-
volume (HMLV) manufacturing system, where 
engine types, control units, and internal 
components vary based on ship owners' 
requirements and specific applications. 
Consequently, the list of collectable data differs for 
each engines. Given that different types of engines 
may be assembled on the same testbed depending 
on the operational schedule, the factory’s data 
acquisition system must be designed with sufficient 
flexibility to accommodate this diversity. 

Using Microsoft Azure IoT services a signal 
framework is established tailored to each engine’s 
specifications, automating data collection. The 
system is structured into three main components: 

 IoT Edge – Stores and retrieves engine 
information. Monitors start/stop status of the 
engine  

 IoT Middleware – Provides a monitoring 
dashboard for real-time insights. Processes 
and stores collected data for analysis 

 IoT Hub – Manages Edge modules for 
distributed processing. Handles device 
management, ensuring seamless 
communication between IoT components 

RabbitMQ is employed for data communication 
between IoT components, ensuring efficient and 
rapid message transmission. The data sent from 
the Middleware is processed through the IoT Hub 
before being stored in the company’s time-series 
database, enabling streamlined data management 
and real-time monitoring. 

2.2 Auxiliary Data Collection with PLC-
based System 

During shop tests, it is essential to consider 
changing environmental conditions to accurately 
predict engine performance, assess operational 
stability, and provide timely alerts for potential risks. 
To achieve this, data from auxiliary equipment, as 
shown in Table 1, must be collected alongside 
engine parameters. 

Many of these auxiliary systems were introduced 
before the era of digitalization, and as a result, each 
component—including sensors, actuators, and 
electronic control units—is physically embedded 
with dedicated hardware. These systems are often 
only partially connected to private networks or 
individual HMIs (Human-Machine Interfaces), 
originally designed with limited external 
communication capabilities. Consequently, they 
were initially configured to operate in isolated 
environments, restricting seamless data integration 
and remote monitoring.  

To facilitate data collection in this environment, a 
new PLC-based system has been introduced. 
Given the variations in existing testbeds and their 
associated auxiliary equipment, the system utilizes 
advanced networking technologies and protocols 
such as Industrial Ethernet, Industrial Wireless 
Networks, Fieldbus, TCP, OPC-UA, and RS-485 to 
ensure seamless data transmission and 
integration. 

These PLCs are configured to synchronize data 
acquisition across different components, ensuring 
that all recorded data aligns within the same 
timeline. Ultimately, the collected data is 
transmitted to the intranet via OPC-UA, enabling 
centralized monitoring and analysis while 
maintaining compatibility with existing 
infrastructure. 

Table 1. List of Auxiliary components  

Equipment Purpose 

Power Meter Engine performance 
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Micro Pilot Consumption Engine performance 

Fuel Oil Consumption Engine performance 

GRU (Gas Regulating Unit) Engine performance 

Exhaust Back Pressure Engine performance 

SCR IMO Tier compliance  

Ambient Condition Engine performance 

Bearing & Winding temp. Engine safety 

Exhaust Emission IMO Tier compliance 

(Option) Vibration/Noise Engine safety 

 

3 THE NEMOS 

In addition to the engines and auxiliary equipment 
installed and operated in the HiMSEN Production 
Plant, a separate gas analyzer (HORIBA MEXA 
series) is utilized to analyze gaseous exhaust 
emissions generated during engine operation. 
Unlike fixed installations, this gas analyzer is 
designed to be mobile, allowing relocation between 
testbeds and across factory sites. 

However, due to its mobility, manual input from field 
operators is required to identify which engine the 
measured emission data corresponds to. 
Furthermore, since it operates on a separate power 
source, it must be capable of transmitting and 
receiving remote signals to determine the active 
status of the device. Comprehensive equipment 
management is also necessary to track 
maintenance history, internal component 
replacements due to failures, aging and wear 
conditions, and span gas calibration records before 
each measurement. 

To evaluate compliance with IMO NOx emission 
regulations (MARPOL Annex VI) using raw NOx 
concentration (ppm) data obtained from the gas 
analyzer, additional data such as ambient 
conditions, engine operation parameters, and fuel 
consumption must be considered. While the 
digitalized infrastructure of the HiMSEN Production 
Plant provides access to relevant data, a dedicated 
stream processing server was implemented to 
ensure precise time synchronization between 
emission data and engine operation data, enabling 
accurate calculation of NOx emissions (g/kWh). 

To overcome these challenges, NEMOS was 
developed to enable real-time emission 
assessment during the shop test. The system 
offers comprehensive monitoring by integrating 
operational and emission data collected from 
multiple sources at varying frequencies. Its intuitive 
user interface (UI), as shown in Figure 3, allows 
operators to log steady-state conditions at each 
load level, while BOM data integration automates 
input based on the engine’s unique ID, reducing 
reliance on manual entry. Upon completion of the 
test, emission data is automatically processed and 
compiled, facilitating report generation that 
minimizes operator workload while ensuring 
accuracy and statistical reliability.  

3.1 Gas Analyzer Data Collection with 
wireless Communication  

Multiple gas analyzers are deployed across various 
production sites, each assigned a distinct IP 
address via Private LTE (PLTE) infrastructure, 

Figure 3. NEMOS UI, 1) Installed Engine by Plant Testbed, 2) Real-time emission monitoring, 3) Report & 
Summary 4) DB lists 
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enabling TCP/IP-based status monitoring and data 
exchange. To ensure seamless operation, the 
system periodically checks whether the equipment 
is powered on and functioning properly and 
dynamically initializes a dedicated kernel for active 
analyzers, facilitating continuous data acquisition 
until the device is deactivated. The collected 
information is then relayed to a message queue, 
where it is autonomously processed within 
containerized services hosted in the Data Center. 

The stream data transmitted to the message queue 
is buffered to handle potential communication 
disruptions, allowing real-time storage in InfluxDB, 
a time-series database. Additionally, during the 
initial system deployment, key metadata - including 
installation location, model specifications, 
purchase year, and PLTE router configuration - is 
structured within a relational database (RDB). A 
predefined API service allows for manual updates 
to equipment records, ensuring precise asset 
management as operational conditions evolve.  

For medium-speed dual-fuel (DF) engines 
operating at rated speed, emission values are 
typically recorded 10–20 minutes after reaching a 
stable load condition. However, while there are 
fundamental criteria for determining stabilization, 
the judgment often relies on the experience of 
skillful operators, and this process is not 
systematically documented. By leveraging the data 
recorded by experienced operators, the NEMOS 
can aid in establishing additional criteria, 
contributing to the standardization of stabilization 
assessment through a structured methodology. 

3.2 Streaming Data Pipeline  

Reliable real-time data is fundamental to the 
success of smart factory implementation, impacting 

efficiency, cost, automation, and security. To 
ensure data reliability, it is crucial to design a 
system capable of processing real-time data 
promptly while ensuring no data loss even in 
temporary network disruptions. To achieve this, the 
system must temporarily store data locally and 
process it once connectivity is restored. This 
necessity led to the development of a streaming 
data pipeline, which efficiently manages data flow 
and ensures stable transmission to the database, 
maintaining data integrity and reliability throughout 
the process.  

Figure 4 illustrates system architecture of NEMOS 
for engine emission monitoring and analysis. The 
system consists of three major components:  

 Factory (Data Sources & PLC Integration): 
Various sensors and meters collect engine-
related operational data. The PLC integrates 
and transmits data to the Develop Center 

 Develop Center (Data Processing & Analysis): 
Data Receiver handles data serialization and 
time synchronization to ensure real-time 
processing. Data Processor conducts NOx 
regulation checks to ensure compliance with 
emission global standards. Also, the steady-
state condition check provides field operators 
with a signal indicating the engine stabilization 
point, allowing them to accurately determine 
when the engine has reached a stable 
operating state. 

 Internal Database (Data Storage & 
Visualization): The Internal Database 
integrates engine specification data from the 
in-house system, serving as metadata to filter 
and enhance the analysis of operational data.  

Figure 4. System Architecture of NEMOS 
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4 DATA-DRIVEN MODELING OF 
CONTROL VARIABLE EFFECTS ON 
MSS-TUNED DUEL-FUEL ENGINES  

In recent years, the adoption of liquefied natural 
gas (LNG) as a marine fuel has significantly 
increased due to its advantages in reducing sulfur 
oxides (SOx), nitrogen oxides (NOx), and carbon 

dioxide (CO₂) emissions compared to conventional 

fuels. However, the environmental benefit of LNG 
can be substantially offset by the emission of 
unburned methane, commonly referred to as 

methane slip[7]. Methane (CH₄) is a potent 

greenhouse gas with a global warming potential 

(GWP) that is 29.8 times greater than CO₂ over a 

100-year timescale and up to 86 times over a 20-
year timescale, according to the Intergovernmental 
Panel on Climate Change (IPCC)[8]. The presence 
of methane slip in gas-fueled marine engines has 
thus emerged as a critical environmental concern, 
undermining the long-term sustainability of LNG 
propulsion systems. 

To mitigate this issue, technologies such as 
Methane Slip Solution (MSS) have been 
developed, which utilize multistage micro-pilot fuel 
injection strategies to reduce unburned methane in 
the exhaust gas. However, determining the optimal 

injection parameters—such as timing, duration, 

and pressure settings—for various engine load 
conditions is a highly complex task. It requires 
extensive experimentation and analysis due to the 
nonlinear interactions between control inputs, 
combustion behavior, and emission outputs. The 
process is further complicated by engine-to-engine 
variability in production and the sensitivity of 
methane formation dynamics to minor control 
deviations. As a result, a significant amount of time, 
cost, and engineering resources is traditionally 
required to identify and validate tuning parameters 
that effectively minimize methane slip without 
compromising engine performance or stability. 

In line with global efforts to reduce methane 
emissions from gas-fueled engines, Hyundai 
Heavy Industries–Engine & Machinery Division 
(HHI-EMD) has pursued several technical 
strategies, including the implementation of Cylinder 
Cut-Off (CCO) and Crevice Volume (CV) reduction, 
to mitigate methane slip. Among these, the 
application of multi-phase injection (MPI) using 
micropilot fuel has shown promising potential in 
minimizing unburned methane during gas mode 
operation. This study focuses on the analysis of 
operational data obtained under MPI 
configurations, with the objective of developing a 
methodology that can rapidly identify optimal tuning 
points for Methane Slip Solution (MSS). By 

leveraging a structured data-driven approach, the 
proposed method significantly reduces the time 
required for MSS tuning in mass-produced 
engines. Furthermore, it enables a deeper 
understanding of the interdependencies among key 
control parameters, thereby laying the groundwork 
for future in-depth analysis of engine performance 
and emission behavior under various operating 
conditions. 

4.1 MSS Tuning Real-data Preparation 

For this study, real-time operational data was 
collected from the HiMSEN Production Plant during 
actual MSS tuning procedures conducted by field 
engineers. The integrated dataset was acquired 
through the NEMOS platform, which streams 
structured time-series data from the shop floor to 
research environments. This dataset includes three 
primary categories of variables: control parameters 
manually adjusted by operators (e.g., injection 
timing and duration), system state variables 
internally regulated by the engine controller, and 

emissions data (e.g., NOx, CH₄) reflecting the 

engine’s environmental output. These variables 

were synchronized and serialized at fixed intervals 
through the NEMOS data pipeline to ensure 
temporal consistency. 

To analyze the impact of operator-driven tuning, 
changes in control variables were segmented 
based on predefined thresholds. This allowed for 
the identification of meaningful before-and-after 
intervals, enabling the training of time-series 
models to capture the dynamic relationships 
among control inputs, system behavior, and 
resulting emissions. Prior to model development, 
the dataset underwent preprocessing, including 
removal of missing values and smoothing using a 
moving average filter to reduce transient noise and 
improve signal stability. 

4.2 Variable Selection and Preprocessing  

To construct a relevant dataset for modeling CH4 
emissions, we selected five primary variables from 
the MPI control domain: 

 Main pilot injection timing 

 Main pilot injection duration 

 Pre-pilot injection timing 

 Pre-pilot injection duration 

 Charge air pressure  

Each variable was extracted from second-level 
time-series shop test logs. Preprocessing included 
smoothing and normalization for system and 
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emission variables to ensure effective convergence 
during learning.  

4.3 Control Event Segmentation and Dataset 
Construction  

To build a reliable model, training data must reflect 
meaningful variations in engine control parameters. 
Manual tuning performed by operators during 
engine optimization provides useful reference 
points where control variables significantly change 
as show in Figure 5. By segmenting these 
moments, we construct a training dataset that 
accurately represents the dynamic relationship 
between engine control variables and emission 
concentrations.  

 

Figure 5. MSS tuning control variable changes 
performed by operators 

4.4 Dual-Model Learning Structure 

To accurately capture the behavior of CH4 
emissions, a two-tier model architecture was 
developed: 

 BaseModel: Learns the general behavior of 
CH4 emission under steady-state conditions 
using sequences without control intervention. 
This reflects baseline engine behavior under 
fixed load and speed. 

 ControlEffectModel: Trained specifically on 
control-influenced segments, this model 
captures how variations in control input 
gradually alter CH4 output. The model's output 
is combined with the BaseModel prediction to 
reconstruct total CH4 prediction over time. 

Loss minimization is applied over the composite 
prediction relative to actual emission data.  

4.5 Modeling Temporal Influence of Control 

To represent the gradual influence of control 
changes, three temporal response models were 
explored. The following equations define the 
temporal influence weights used to model control 

effects on CH ₄  emission in dual-fuel engines. 

These formulations are used to modulate the 

maximum effect of a control input Δymax over time 
as shown in Equation 1. 

ypred(t)=ybase(t) + w(t) * Δymax   (1) 

w(t)=exp(-(t-)2/(22))     (2) 

w(t)=exp(-pt)      (3) 

w(t)=1/exp(-k(t-))     (4) 

 
Where: 

 ypred: The baseline CH₄ emission prediction at 

time t obtained from the BaseModel 

 w(t): Time-varying influence weight applied to 
control effect 

 p: Exponential decay rate, p > 0 

 μ (mu): Center of influence (in time steps) 

 σ (sigma): Spread of influence (standard 
deviation in Gaussian) 

 k: Slope parameter controlling the steepness 
of the sigmoid transition 

 t: Time index (t = 0, 1, ..., 59) 

Each model predicts a dynamic weight curve over 
the 60-step window, modulating the control effect. 

Empirical evaluation showed that the sigmoid-
based control influence model most accurately 
mirrored real engine behavior. The final model, 
combining the sigmoid kernel-based control effect 
and baseline emission prediction, demonstrated 
the lowest MAE and R2 in comparison with actual 
CH4 measurements. 

Table 2. Temporal Influence simulation models  

Model MAE R2 Equation 

Gaussian 181.3283 0.7742 Eq.2 

Exponential Decay 167.1868 0.8144 Eq.3 

Sigmoid 162.0370 0.8191 Eq.4 



 

CIMAC Congress 2025, Zürich                Paper No. 334             Page 10 

 

 

4.6 Evaluation 

 

Figure 6. Predicted emission concentration based 
on LSTM model 

Figure 6 displays four key elements: the actual CH4 

measurements(True CH₄), the baseline predictions 

from the BaseModel (Base CH₄), the influence of 

control inputs (Control Element), and the resulting 

CH ₄  prediction that combines both components 

(Predicted CH₄ with Control). The red vertical lines 

mark the timing of control actions, while the yellow-
colored bars at the bottom represent the magnitude 
and direction of control variable changes applied at 
those moments. 

The model incorporates a sigmoid-based temporal 
influence kernel to reflect the gradual effect of 
control interventions over time. As shown, the 

predicted CH ₄  values closely track the true 

measurements during and after control 
adjustments, demonstrating the model's capability 
to adapt to dynamic engine behavior. According to 
Table ~, this model configuration achieves a 
coefficient of determination (R2=0.8191, 
MAE=162.0370) The results demonstrate that the 
model effectively captures exhaust gas 
concentration trends under both scenarios:  

 When control variables continuously change, 
the model adapts dynamically and accurately 
tracks fluctuations. 

 When control variables remain stable over a 
long period, the model maintains a consistent 
prediction, aligning well with the raw data 
trends.  

These findings validate the model’s ability to 
generalize across different engine operating 
conditions while maintaining high prediction 
accuracy. 

Although this analysis was conducted on a single 
engine type with a limited dataset, future 
accumulation of operational data from field 
applications is expected to enable more detailed 
and comprehensive analyses. To achieve this, 

reliable data collection and storage must be 
prioritized, ensuring the integrity and consistency of 
the dataset. Additionally, the accuracy of operator 
key-in inputs plays a crucial role in refining the 
model’s predictive capabilities, highlighting the 
necessity of meticulous data management for 
continuous improvement. 

5 CONCLUSIONS 

HHI has successfully established a data integration 
system for the HiMSEN Production Plant, marking 
a significant step toward digitalization in engine 
manufacturing and testing. This paper highlights 
the challenges encountered during its 
implementation and explores how the collected 
data is leveraged to enhance performance and 
operational efficiency. By integrating ICT-based 
infrastructure, the system enables real-time data 
acquisition, structured storage, and advanced 
analytical capabilities, contributing to the 
advancement of HiMSEN engine technology and 
reinforcing HHI’s leadership in smart factory 
solutions.  

1 A comprehensive data acquisition system has 
been successfully implemented at the HiMSEN 
Production Plant, integrating network 
technologies, industrial protocols, PLCs, and 
IoT to enable real-time data collection and 
structured storage. 

2 To further enhance digital knowledge 
management, NEMOS was introduced, 
allowing operators to input critical operational 
data while facilitating collaboration between 
field operators and research teams. 

3 Data-driven analysis, such as the Prediction of 
Emission Concentration, demonstrated the 
system’s ability to track exhaust gas trends and 
optimize emissions, with continuous data 
accumulation and integration of external 
factors expected to further improve predictive 
modeling and engine performance 
optimization.  

The digital transformation of other Hyundai Heavy 
Industries engine plants is expected to accelerate, 
enabling the comprehensive collection of 
operational and environmental data. This will not 
only support the design and development of eco-
friendly engines but also facilitate the creation of 
precise performance models for HiMSEN engines, 
serving as a key driving force in advancing the 
licensing business. By continuously enhancing 
data-driven methodologies, Hyundai Heavy 
Industries will further optimize engine performance, 
sustainability, and production efficiency, reinforcing 
its leadership in the global engine manufacturing 
industry.  
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DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

AI: Artificial Intelligence 

BOM: Bill of Material 

DF: Dual Fuel 

ECA: Emission Control Area 

GRU: Gas Regulating Unit 

HiEMS: Hyundai Intelligent Equipment 
Management Solution 

HiBRAIN: Hyundai Integrated Brilliant Artificial 
Intelligence Net 

HiCAMS: Hyundai Intelligent Camera-Based Alarm 
Monitoring System 

HiDTS: Hyundai Intelligent Digital Twin Ship 

HMLV: High-Mix, Low-Volume 

HHI: HD Hyundai Heavy Industries 

HMI: Human-Machine Interface 

ICT: Information and Communication Technology 

IMO: International Marine Organization 

IoT: Internet of Things 

ISS: Integrated Smart Ship Solution 

LSTM: Long Short-Term Memory 

MSS: Methane Slip Solutions 

MPI: Multi-phase Injection 

NEMOS: NOx Emission Management & 
Optimization System 

OPC UA: OPC Unified Architecture 

PCA: Principal Component Analysis 

PLC: Programmable Logic Controller 

PLTE: Private LTE 

RDB: Relational Database 

SCR: Selective Catalytic Reduction  

TCP/IP: Transmission Control Protocol/Internet 
Protocol 

UI: User Interface 
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