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ABSTRACT

At a time when the maritime industry is increasingly reliant on advanced technological solutions, this
paper explores the critical importance of maintenance in optimizing the performance of filtration
systems with a filtration fineness of less than 10 microns - a key innovation in protecting marine
engines and vital onboard mechanisms. As a filtration company integrating digitalization, connectivity
and the Internet of Things (IoT) into its cutting-edge products, we emphasize the need for careful
maintenance protocols to ensure the longevity and effectiveness of these fine filtration solutions.

Our discussion highlights how IoT-enabled sensors embedded in the filtration systems enable real-
time monitoring of key parameters, including filter saturation and particle accumulation, which are
particularly important for maintaining the integrity of sub-10 micron filters. The paper highlights the
effectiveness of these advanced filtration technologies through a case study on land, draws parallels
with their applications at sea and demonstrates the central role of regular maintenance to prevent
performance degradation over time.

Given the enhanced susceptibility of finer filters to clogging and the consequential impact on engine
performance, we stress that proactive, data-driven maintenance is not merely beneficial but essential.
We created an in-house online platform which enables our service providers to identify trends in
filtration performance and act on that information immediately. We use key performance indicators and
our knowledge from performance tests within the research and development department to correctly
assess the state of our filters and issue automated alarms to the users if the performance is
degrading. This way we can transition from scheduled to condition-based maintenance and guarantee
filtration performance through the whole lifecycle of our product. While we are still using humans in the
loop to ensure a satisfactory customer experience, we are also exploring the possibilities of
automating the process based on anomaly detection with more advanced machine learning
algorithms.
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1 INTRODUCTION 

This paper describes the currently deployed data 
driven maintenance system at the Boll & Kirch 
Filterbau GmbH. The system integrates commonly 
used open-source software with a custom-made 
user frontend for internal and external users. 

The reason for developing a platform for our 
filtration solutions is the extension of filter element 
lifetime. With increasing filtration fineness and 
demand for continuous operation the need for 
condition-based maintenance is even more 
pressing than before. Unplanned downtime can be 
costly and must be prevented. 

The current solution for all Boll & Kirch Filters 
equipped with control boxes consists of counters 
for flushing events and filter runtime which are only 
accessible locally at the filter. No alarms or 
reminders are issued to the user when a service is 
due. The counters are manually checked and 
compared against maintenance intervals taken 
from the filter’s manual. Filter performance alarms 
are based on a differential pressure indicator with 
two level switches signalling 75% contamination to 
trigger a backflush or 100% contamination to 
trigger an alarm. Alarms are only locally signalled 
by a red LED or can be relayed from the control box 
by using a digital output. There are no further 

measures in place to indicate a degradation of filter 
performance or filter element lifetime. 

In a first step we developed a cloud-based 
monitoring system. Cloud-based systems are 
easier to iterate on and advance the solution faster 
[1]. A centralized approach also makes it easier to 
collect sensor data and perform explorational data 
analysis and test algorithms. This paper introduces 
the cloud architecture we use to collect data, the 
security measures in place to prevent unauthorized 
access and the algorithms used to analyse 
incoming data. The next step as described in the 
outlook will be bringing our algorithms from the 
cloud back to the control boxes and therefor not 
depend on a continuous connection to the internet 
which is detrimental to some filtration use cases. 

2 ARCHITECTURE OVERVIEW 

The architecture we use is based on a reference 
architecture provided by Microsoft [2]. Figure 1 
shows an overview of the whole system with its 
subsystems. Our control boxes (1) send data to a 
broker (2) which handles authentication and 
authorization. The data is then forwarded to a time 
series database (3) for storage. Our infrastructure 
uses built in database functions to check for alarms 
on the data. The application BLUEtwin (4) 
visualizes the data and sends out alarms to users 
via mail. 
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Figure 1: Architecture 
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2.1 Communication 

The protocol we use for communication between 
the filter control box and the cloud is MQTTs. It is a 
lightweight messaging protocol for IoT usage which 
works with limited bandwidth. The transmission is 
encrypted via TLS. A broker (2) is hosted in our 
cloud environment which authenticates clients and 
applies access control lists to registered devices. 
MQTT is a publish/subscribe based protocol. 
Access control lists make sure that authenticated 
devices only publish or subscribe to those topics 
they have access to. 

2.2 Data storage 

Time series data is forwarded and stored in an 
optimized database (3). This kind of database is 
required when storing sensor data and comes with 
built-in analytic functions. We later use this analytic 
functions to perform data transformation and 
generate insights for our users. 

2.3 Bluetwin 

The application (4) which the user connects to. It is 
tailor-made for our needs and hosts the frontend to 
our data. It gives the users key performance 
indicators for his filters and gives recommendations 
on actions to be taken. 

2.4 Further components 

There are more components required to run our 
service which are used for user management (5), 
persistent storage of data (6), internally routing 
traffic (7) and manually inspecting data (8). We also 
connect to our ERP system (9) to import data like 
user manuals. 

3 SECURITY 

To identify security threats, the STRIDE model by 
Microsoft was used [3]. STRIDE is an acronym for 
spoofing, tampering, repudiation, information 
disclosure, denial of service and elevation of 
privileges. For every connection between systems 
these threats must be evaluated, and appropriate 
measures must be taken. In the following section 
the security measurements of our control box are 
described. 

3.1 Control Box 

The primary goal is to always keep the filter 
operational. A first security measure is separating 
the IoT functions from the filtration functions on the 
hardware level. This means initiating a flush based 
on input from sensors is handled by a separate 
microcontroller (filter controller) which is 
unchanged from previous generations of control 
boxes. A second microcontroller (IoT controller) is 
used to collect the data over a serial connection to 

the filter controller, temporarily store it and send it 
to the cloud as soon as an internet connection is 
available. This makes sure that denial of service 
attacks, tampering or elevation of privilege attacks 
from the internet will not have any effect on the filter 
performance. Physical access to the device is the 
only way to influence the filters functionality. 

The connection between the IoT controller and the 
broker is secured by using TLS encryption, 
authentication, authorization and ensuring 
availability of over the air updates to the firmware. 
To combat spoofing the broker is using certificates 
signed by a certificate authority. During the TLS 
handshake the IoT controller checks for the correct 
server certificate and only establishes a connection 
if it can be verified against a root certificate issued 
by the certificate authority. TLS encryption also 
secures the connection from tampering any data 
send by the IoT controller. The broker only accepts 
the connection after authenticating the control box 
credentials and ensures the connected control box 
only publishes information to authorized topics by 
applying access control lists. Reacting to new 
threats is only possible by constantly updating the 
running firmware. The IoT controller continuously 
checks for updates and installs the latest signed 
firmware. The signature prevents an attacker from 
installing firmware and therefor taking over the IoT 
controller. 

4 DATA ANALYSIS 

For this paper it is mandatory that the filter is 
equipped with a differential pressure sensor and 
connected to the internet. The IoT controller can 
store a limited amount of data in case the internet 
connection drops. After one day up to a week, 
depending on the number of sensors and the 
logging interval, the oldest data will be overwritten. 
As soon as the internet connection is reestablished 
stored data is sent to the cloud. The proposed 
method only applies to filters with differential 
pressure based flushing cycles, which means a 
flushing event is initiated when a certain differential 
pressure is reached. 

The filter sends data periodically to the broker. If 
sudden events occur, which lead to rapid changes 
in sensor values, additional data is logged and 
send to the broker. Data we use to perform our 
analysis on is the differential pressure, the 
cumulative value of flushings as well as the 
cumulative value of operating hours. 

The data analysis focuses on three main goals: 

1. Usage based maintenance prediction. 

2. Performance based maintenance 
recommendations. 
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3. Anomaly detection. 

As described in the introduction there are currently 
no mechanisms in place to inform the user about 
upcoming maintenance and alarms are only issued 
by evaluating sensor data against a threshold. 

By predicting the next maintenance based on 
actual filter usage we enable the user to shift from 
unplanned to planned maintenance. The next step 
is evaluating filter performance which enables us to 
dynamically give recommendations to ensure 
maximum filter lifetime. At last, detecting anomalies 
earlier gives the user time to react and avoid any 
potentially harmful operating conditions for the 
filter. 

4.1 Maintenance prediction 

For all supported filter series, the associated 
maintenance intervals for the wear sensitive parts 
are stored in a database. Those intervals are also 
found in the user manuals which are shipped with 
our products.  

Maintenance intervals are purely based on 
cumulative flushings or operating hours, which can 
be confirmed by continuously running the filters on 
test benches. The filters are shipped into vastly 
different applications, which makes it hard to 
predict actual maintenance intervals in terms of 
months or years. To give a prediction on the next 
maintenance historical data of the specific filter is 
needed.  

Our application uses the historical data of operating 
hours and flushings to calculate a usage-based 
estimation of the next maintenance date. The 
algorithm uses the historical data of a given 
timeframe and calculates an average filter usage 
for the given timeframe. Based on the 
predetermined maintenance intervals in the 
database it extrapolates the timeframe until the 
next wear limit is reached and informs the user 
about the date. 

For a given filter and time interval ∆𝑡 the amount of 
flushings 𝑓𝑆𝑡𝑎𝑟𝑡 and operating hours 𝑂𝑝𝐻𝑜𝑆𝑡𝑎𝑟𝑡 at 

the start of the interval and flushings 𝑓𝐸𝑛𝑑 and 

operating hours 𝑂𝑝𝐻𝑜𝐸𝑛𝑑 at the end of the interval 
are loaded from the time series database. Those 
are used to calculate the totals as described in (1) 
and (2). 

     𝑓𝑇𝑜𝑡𝑎𝑙 = 𝑓𝐸𝑛𝑑 −  𝑓𝑆𝑡𝑎𝑟𝑡   (1) 

     𝑂𝑝𝐻𝑜𝑇𝑜𝑡𝑎𝑙 = 𝑂𝑝𝐻𝑜𝐸𝑛𝑑 −  𝑂𝑝𝐻𝑜𝑆𝑡𝑎𝑟𝑡 (2) 

With these values the average flushings 𝑓𝐴𝑣𝑔 and 

operating hours 𝑂𝑝𝐻𝑜𝐴𝑣𝑔 for the given time interval 

are calculated. 

     𝑓𝐴𝑣𝑔 =  
𝑓𝑡𝑜𝑡𝑎𝑙

∆𝑡
    (3) 

     𝑂𝑝𝐻𝑜𝐴𝑣𝑔 =  
𝑂𝑝𝐻𝑜𝑇𝑜𝑡𝑎𝑙

∆𝑡
   (4) 

With the current flushing count and operating hours 
value the database is queried for the maintenance 
interval the filter is currently in and the 
corresponding limits are used for further 
calculations. 

     𝑓𝐿𝑖𝑚𝑖𝑡: 𝐿𝑖𝑚𝑖𝑡 𝑜𝑓 𝑓𝑙𝑢𝑠ℎ𝑖𝑛𝑔 𝑐𝑜𝑢𝑛𝑡 (5) 

     𝑂𝑝𝐻𝑜𝐿𝑖𝑚𝑖𝑡 : 𝐿𝑖𝑚𝑖𝑡 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 (6) 

The average filter usage combined with the limits 
can now be used to estimate the date of the next 
maintenance 𝑡𝑀𝑎𝑖𝑛 by comparing the next 

maintenance based on flushings cycles 𝑡𝑀𝑎𝑖𝑛,𝑓 and 

the next maintenance based on operating hours 
𝑡𝑀𝑎𝑖𝑛,𝑂𝑝𝐻𝑜. 

     𝑡𝑀𝑎𝑖𝑛,𝑓 =  𝑓(𝑡, 𝑓𝐿𝑖𝑚𝑖𝑡 , 𝑓𝐴𝑣𝑔)  (7) 

     𝑡𝑀𝑎𝑖𝑛,𝑂𝑝𝐻𝑜 =  𝑓(𝑡 , 𝑂𝑝𝐻𝑜𝐿𝑖𝑚𝑖𝑡 , 𝑂𝑝𝐻𝑜𝐴𝑣𝑔)  (8) 

     𝑡𝑀𝑎𝑖𝑛 =  𝑚𝑖𝑛( 𝑡𝑀𝑎𝑖𝑛,𝑓 , 𝑡𝑀𝑎𝑖𝑛,𝑂𝑝𝐻𝑜)  (9) 

The user is then informed about the result of the 
estimation in the front end of the application as 
shown in Figure 2. It shows the needed spare parts 
as well as which evaluation the estimation is based 
on. 

 

Figure 2: Front end view 

4.2 Flushing performance trend analysis 

To further extent the lifetime of our filtration solution 
we also analyse trends in the differential pressure 
data. Automatic filters are self cleaning and 
therefore do not need to be cleaned manually. Over 
time automatic filter elements also build a particle 
load which can not be cleaned by the backflushing 
system anymore. A manual cleaning can get rid of 
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this base load and lead to increased flushing 
intervals and therefore an increased filter element 
lifetime since the backflush introduces additional 
stress into the element. 

Catching a trend in backwash performance by 
manually reading values from gauges is nearly 
impossible. The most important indicator for a base 
contamination of the filter mesh is the differential 
pressure directly after a flushing event. With access 
to historical sensor data, we can calculate a trend 
line and not only visualize trends but also predict 
when the next manual cleaning is due. 

To achieve this, the raw sensor data collected from 
our filters is used by searching for flushing events 
and calculating the differential pressure after a 
flushing event occurred. For every filter registered 
to our application we automatically save a baseline 
value for the post flushing differential pressure 
𝑑𝑝𝐴𝑓,𝐵𝑎𝑠𝑒 when the first data is sent. For every Filter 

an alarm is created in the database which 
periodically checks if the current value is bigger 
than a limit value derived from the base value by 
multiplying with a factor 𝑘1.  

     𝑑𝑝𝐴𝑓,𝐿𝑖𝑚𝑖𝑡,𝑐𝑙𝑒𝑎𝑛 = 𝑘1 ∗  𝑑𝑝𝐴𝑓,𝐵𝑎𝑠𝑒 (10) 

If the limit is reached the user is alarmed by the 
system and a recommendation to clean the 
element is given. The system also asks the user to 

inform us about the exact time of the manual 
cleaning which is then used to compare the after 
flushing differential pressure before and after the 
manual cleaning to judge its effectiveness. 

A second limit is introduced for every element type 
which is used to give recommendations for 
changing elements because manual cleaning did 
not succeed. This limit is based on the element 
design and can not be changed by the user. If the 
differential pressure after flushing reaches this limit, 
we recommend changing the element completely. 

To add a predictive part to the analysis we also 
apply time series forecasting by using exponential 
smoothing on the differential pressure after 
flushing. Figure 3 shows an exemplary time series 
of an automatic water filter used for desalination 
with a filtration degree of under 10 µm. The data is 
taken from a customer filter and spans thirteen 
days of operation. Oscillations to extremely low 
values of differential pressure after flushing are 
caused by forced flushing events when the filter is 
in an idle state. No volume flow is passing through 
the pressurized filter and the system initiates a 
flush based on a timer. While oscillations to higher 
values are caused by heavy particle load after 
which the filter needs several flushing cycles to 
recover. The differential pressure after flushing 
shows raw sensor data with no further smoothing 
applied. 

Figure 3: Trend analysis 



 

CIMAC Congress 2025, Zürich                Paper No. 297             Page 7 

 

The orange part of the time series consists of the 
known data the algorithm uses. The blue part are 
the future values not known to the algorithm and 
are only used to visualize the prediction error, since 
we are back testing the exponential smoothing on 
historical data in this example. The red line shows 
a prediction of the coming two days based on long 
term data (last fourteen days), while the green line 
shows a prediction of the next day based on short 
term data (last three days). By nature, the short-
term prediction is much more volatile to changes in 
filter performance. Comparing the short and long-
term predictions (green and red line) to the future 
values (blue line) we can observe that the algorithm 
is able to catch the trend in the data and give a 
good estimation of the differential pressure after 
flushing for the following days. 

Both trends are added to the limit alarms and are 
used to inform the users about upcoming manual 
cleaning recommendations. Trends coupled with 
current data help the operator to make informed 
decisions on when to perform maintenance and 
prevent unplanned downtime. 

A limitation to this approach is shown in Figure 4. 
The filter is under normal load for approximately 
two and a half days (1). After that we see a sharp 
rise in differential pressure after flushing (2) most 
likely caused by a heavier particle load. Even a 
short period of no volume flow (3) with forced 
flushings by timer does not lead to a lower 
differential pressure after flushing in the next phase 

of operation (4). Over the course of another day (5) 
the load reduces, and the filter returns to normal 
operation (6). The short-term data (last three days) 
suggests a sharp rise in differential pressure after 
flushing as shown in phase (1) - (4). The prediction 
based on the short-term data (green line) acts 
accordingly and the user would have been 
informed about an upcoming cleaning 
recommendation while the long term data (last 
fourteen days) ignores the sudden rise in 
differential pressure and is in this case the better 
indicator, knowing how the filter reacted to the 
changing load. Since we operate on the differential 
pressure data alone, we do not know anything 
about the status of the overall system the filter is 
integrated in. Sudden changes in differential 
pressure can be caused by higher volume flows or 
an increased particle load. The final decision to 
perform a manual cleaning or full filter element 
replacement is therefor still in the hands of the 
operator. We try to remove any manual reoccurring 
and time-consuming tasks and only try to catch the 
operator’s attention when an action could be 
required.  

4.3 Anomaly detection 

To correctly interpret short term trends in the data 
we are currently developing a solution involving 
machine learning to correctly detect anomalies in 
our differential pressure data. This part is still in a 
prototyping phase of development and not used in 
a productive environment. We would still like to 

Figure 4: Example of short time heavy load operation condition 
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describe the current state of the solution to give an 
example of using machine learning for anomaly 
detection in time series data in a filtration context.  

The model used on the data falls into the category 
of autoencoders. As the name suggests this family 
of models is used to encode and in a later stage 
decode the data to its original state again. Since 
these models are unsupervised, no labeled data is 
needed to train them. This contrasts with 
supervised learning models, which need hand 
labeled data to correctly learn connections between 
the input, for example images, and the ground 
truth, if the images show cats or dogs. The model 
is based on a convolutional neural network (CNN) 
described in [4]. It is fed a time series as input and 
reduces it to its main features in the encoding 
stage. When decoding the encoded data, it tries to 
reconstruct the given input based on the reduced 
features as an output. When using the model to 
detect anomalies we use this to our advantage. 
When decoding and encoding the times series data 
errors are introduced into the reconstruction. This 
reconstruction error can be used to find anomalies 
in the data. A low reconstruction error suggests a 
time series, which is similar to the one the model 
was trained on. When finding a time series with a 
bigger reconstruction error it is likely to be an 
anomaly. This approach also means that you only 
need non anomalous data to train your model. 

 

Figure 5: Input time series 

During the process of training the model it tries to 
minimize the errors made when reconstructing the 
input. Figure 5 shows a part of the raw input time 
series data which is used to train the model. For 
training, the time series data is split into smaller 
series of 120 data points per series. A sliding 
window approach was used to create overlapping 

time windows of the mentioned size. To ensure no 
anomalies are present in the training data, 50 hours 
of filter operation were hand picked by an 
experienced engineer. 

After training the model we can use it on our 
training data to infer the output data and visually 
evaluate the quality of the reconstruction. At this 
stage we want the model to reconstruct the input 
time series as closely as possible. Figure 6 shows 
an example of an original time series which was 
input into the model to infer its reconstruction. As 
you can see the reconstructed time series closely 
follows the original data. This is to be expected 
because the time series was part of the training 
data. 

 

Figure 6: Reconstructed time series 

To evaluate the general ability to find an anomaly 
which is easily spotted by an operator familiar with 
filtration, data is used which was not part of the 
training data and contains anomalies. The test 
sample was hand picked by the engineer again. 
The reconstruction error is expected to raise when 
evaluating an anomalous time series. A threshold 
𝑡ℎ𝑠 is needed to judge if a time series belongs to 
the anomalous spectrum. This threshold is 
calculated by evaluating the reconstruction error in 
the training data set. The model input 𝑋, output 𝑌 

and number of datapoints 𝑛 in a training sample is 

used to calculate the mean absolute error 𝑀𝐴𝐸 of 
every sample. The threshold is calculated by taking 
the average mean absolute error over all samples 
𝑘 and adding the standard variation 𝜎 to it. 

𝑀𝐴𝐸 =
1

𝑛
∗ ∑ |𝑌𝑖 − 𝑋𝑖|

𝑛
𝑖=1  (14) 

𝑡ℎ𝑠 =
1

𝑘
∗ ∑ 𝑀𝐴𝐸𝑘

𝑘
𝑖=1 + 𝜎 (15) 
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Figure 7: Training mean absolute error 

Figure 7 shows the distribution of errors and the 
corresponding number of samples. Please note 
that the MAE ranges from 0 to 0.05 with a total 
number of training samples of 10100 series 
consisting of 120 datapoints. 

The following step is using the trained model on 
unknown data to make a prediction or in our case a 
reconstruction. This step is called inference. Our 
test data example is taken from a field test of a 
water filter. When using the trained model on the 
test data we use the same data preprocessing 
approach also used on the training data. This 
means splitting the time series into smaller pieces 
of 120 data points using a sliding window. After 
applying the sliding window our test data consists 
of 7924 samples featuring 120 datapoints each. To 
evaluate if a time series is anomalous, we calculate 
the mean absolute error of the test data sample and 
apply the threshold from our training data. Figure 8 
shows the distribution of the mean absolute error in 
the test data set. The calculated error scores are of 
a much wider range compared to the training data, 
which is to be expected since the test data contains 
known anomalies. 

 

Figure 8: Test mean absolute error 

Before looking at the detected anomalies we first 
check the reconstruction of a part of the time series 
data which was not flagged as anomalous. Figure 
9 shows the original and reconstructed data of a 
sample from the test data. The model can 
reconstruct the input data, which means the sample 
is similar to the data the model was trained on and 
therefor not anomalous. 

In contrast to that Figure 10 shows an anomalous 
time series sample from the test data. The model 
fails to reconstruct the original data and therefore 
this sample is classified as anomalous. From a 
filtration perspective the rising differential pressure 
after flushing coupled with an increasing flushing 
frequency can be observed in the original data 
(blue). This kind of behaviour was not present in the 
training data and is unknown to the model which 
leads to the failed reconstruction. 

 

Figure 9: Reconstructed test time series 
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Figure 10: Anomalous sample test data 

Figure 11 shows the complete example data from 
our test set. The data is taken from a test which led 
to a catastrophic failure. The model would have 
flagged the data as anomalous starting at 2:11 am. 
Our standard differential pressure indicator is set to 
initiate a flushing at 0.38 bar and issue an alarm at 
0.5 bar. The differential pressure raised above 0.5 
bar at 3:22 am. An alarm would have been issued 
about one hour earlier using the proposed model. 
By detecting the anomaly early, extra load onto the 

element is reduced, which occurs when a system is 
not shut down in time. 

Analyzing the data from a filtration expert's 
perspective, one would have identified 
performance concerns regarding the filter at that 
time. The flushing intervals are getting shorter and 
the differential pressure after flushing events starts 
to rise. Combining these observations into a single 
actionable threshold was the goal when choosing 
the machine learning approach. Another advantage 
of autoencoders is not needing anomalous 
samples to train the model. Conventional signal 
analysis techniques rely on labeled data containing 
anomalies, which is not available to us in a 
sufficient amount. This is also the reason why no 
accuracy, precision, recall or a f1 score is 
presented. Further work is required to compile a 
meaningful test and validation dataset to ensure 
the robustness and generalizability of our model. 
As mentioned in the introduction to this section we 
do not use the model in production currently. It is 
only trained on a small sample of data and only 
applicable to automatic backwashing filters. We are 
currently evaluating how to implement a machine 
learning solution into our cloud architecture. 
Additionally, it is not clear if we can achieve 
satisfactory performance with only one model or if 
more models are needed based on filter series and 
application.  

Figure 11: Complete test data time series 
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5 CONCLUSION 

This paper has shown the complete architecture of 
a cloud-based data analysis system which is used 
to collect and store data in the cloud, analyse it and 
give feedback to the users. 

By analysing historical filter usage, we can help our 
users schedule condition-based maintenance to 
reduce unplanned downtime. We no longer must 
rely on fixed maintenance intervals. Instead, we 
give a prediction on when the next maintenance 
must be planned according to actual usage a filter 
has seen. 

We also have shown how to evaluate particle 
accumulation in our filter elements by evaluating 
differential pressure build up after flushing events 
in automatic backwashing filters. Coupled with 
trend analysis and forecasting we can give cleaning 
and replacement recommendations to ensure 
filtration performance over time. 

Lastly, we had a look into a machine learning 
approach to automatically detect short term 
anomalies in our differential pressure data. 
Currently our filters would only alarm the user when 
the differential pressure rises above a predefined 
threshold. With the described approach we would 
be able to spot anomalies earlier and prevent 
unnecessary load onto our filter elements. 

6 OUTLOOK 

The approach taken in this paper has the 
disadvantage of needing a constant internet 
connection to work. We are aware that this is not 
possible in every scenario and much less in a 
maritime environment. 

Our focus for the future is bringing the complete 
data analysis capability to our control box and 
therefore to the edge of the cloud. This will need a 
new generation of control hardware which is more 
capable than the current. We are working on a 
protype control box which can run a scaled down 
version of what is shown in Figure 1. The hardware 
we currently test runs a time series database as 
well as the machine learning model. We are 
positive a solution for industrial use in the same 
form factor as our current control box can be 
achieved. 

7 DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

DP: Differential pressure 

MAE: Mean absolute error 
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