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ABSTRACT

As maritime industry moves towards a carbon neutral future, ship systems are gradually becoming
more sophisticated and complex. Apart from decarbonisation, digitalisation of those systems is crucial
to improve their energy efficiency, enhance safety and reduce their environmental footprint. Data-
driven diagnostics as well as prognostics and health management (PHM) digital tools are expected to
contribute significantly to the safe and cost-effective operation of ships. The development of these
tools requires datasets representing wide operating envelopes, which however, are not readily
available in the shipping industry. This study aims to develop a novel health diagnosis methodology for
two-stroke marine engines, with the objective to identify the engine components’ health condition
using acquired performance parameters. The methodology consists of the following three phases: (a)
data correction and conditioning that employs advanced data analysis methods to remove noise and
outliers from historical engine datasets leading to reference distributions of key performance
parameters; (b) development and calibration of a physics-based digital twin by extending an existing
thermodynamic model and incorporating the degradation patterns of selected engine components; this
digital twin will then be employed to derive simulated datasets representing the engine operation
across a wider range of conditions than covered by the available measurements. (c) development of
data-driven models based on three methods; namely, artificial neural networks (NN) of multilayer
perceptron (MLP) type and k-Nearest Neighbor (kNN) and support vector machines (SVM) which
proved to be most effective in previous studies, to predict the health indicators of engine components.
This data-driven model will be trained and validated based on the synthetic datasets, whereas it will be
tested by providing as input non-supervised datasets. The proposed methodology will be
demonstrated through case studies considering the fuel injector degradation of a marine two-stroke
dual-fuel engine, for which extensive measured datasets are available. The expected results include
the data-driven model layout to provide the highest accuracy. Proving this methodology’s
effectiveness will facilitate its implementation as part of a shipboard diagnosis system, as well as the
development of prognostics and health management tools, which are required for smart/intelligent ship
operation.
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1 INTRODUCTION 

The maritime industry has been developing and 
adopting sustainable measures to achieve 
decarbonisation and net-zero targets set by 
international and national organizations [1]. Ship 
manufacturers have already introduced low 
carbon fuels in the market, such as liquified 
natural gas (LNG), which offers a substantial 
reduction of CO2 emissions [2]. In recent years, 
marine dual fuel engines have been extensively 
employed to decarbonize shipping operations. 
Alternative fuels engines could require 
readjustment of their maintenance strategies. The 
pertinent literature argues that marine dual fuel 
engines demonstrate similar reliability to 
conventional marine diesel engines [3]. 
Regardless of the fuel selection, decarbonization 
and sustainability targets lead ship operators and 
engine manufacturers to develop effective 
diagnostics and prognostics for marine engines. 

Over the last years, the application of engine 
diagnostic measures is shifted into more data-
driven approaches or hybrid methodologies, 
including physical models and machine learning or 
artificial intelligence techniques [4]. Actions from 
industrial original equipment manufacturers 
(OEMs) are already in place, such as WinGD’s 
WiDE platform [5], which employs real-time field 
data, digital twins and machine learning to perform 
monitoring and diagnostic tasks.  

With the introduction though of marine dual fuel 
engines, several new faults and issues have 
arisen during their operation compared to diesel 
engines. One of the notable faults pertains to the 
liquid fuel injectors, more specifically the clogging 
effect, where one or more holes of the injector 
nozzle are blocked, leading to a reduced flow area 
during injection [6]. This effect, as well as several 
new faulty conditions associated with the use of 
low and zero carbon fuels must be effectively 
addressed. 

This study aims at developing a methodology for 
components faulty conditions isolation and 
diagnostics, by integrating measured data sets, 
physical models, as well as examining machine 
learning and data-driven methods. The study 
focuses on this degradation of clogging for liquid 
fuel injectors for marine dual fuel two-stroke 
engines, which is one of the most common faults 
according to the service reports [6]. The fuel 
injectors are especially susceptible to thermal and 
mechanical stresses when the engine operates in 
the gas and diesel modes, due to the high 
temperatures of the combustion products (in the 
former), and the liquid fuel high pressure (in the 
latter). Various conditions and combinations of 
these stresses impact the health of the injector 

nozzle. This study scope is to detect faulty 
injectors and identify the level of severity of their 
fault. 

2 INVESTIGATED SYSTEM 

The investigated marine dual fuel engine is used 
as the propulsion engine of an LNG carrier vessel. 
The main characteristics of the engine and vessel 
are listed in Table 1. 

Table 1. Investigated engine basic characteristics. 

 Value Unit 

Vessel type LNG Carrier - 

Deployment year 2020 - 

No. engines 2 - 

Engine type W5X72DF - 

Engine maker WinGD - 

Rated power 11,350 kW 

Rated speed 74 rpm 

BMEP 14.65 bar 

Main gas fuel LNG - 

Main and Pilot liquid fuel MDO - 

Liquid fuel injection type Direct (High Pr.) - 

Liquid fuel inj. pressure 500-900 bar 

Gas fuel injection type Direct (Low Pr.) - 

Gas fuel inj. pressure 5-15 bar 

Further information about the engine and more 
specific characteristics can be found by the engine 
designer sources [7]. 

Each engine cylinder has installed a number of 
main fuel injector bodies, with each injector body 
consisting of several nozzles to achieve effective 
fuel injection. Each nozzle target is to achieve 
ideal fuel distributions and atomization, which is 
required for the effective diffusive combustion [8]. 
Over time, the injector nozzles are subject to 
numerous faults, such as clogging by deposits 
accumulation or cracks, which would affect their 
performance [9]. The effects of these faulty 
conditions on the engine performance variables 
are investigated, as part of the developed 
methodology. 

3 METHODOLOGY 

The proposed methodology, illustrated on Figure 
1, consists of the following three main phases:  

Phase (A): data correction and conditioning. This 
phase focuses on identifying reference values for 
the engine key performance parameters in steady 
state conditions by employing advanced data 
analysis methods to remove erroneous data and 
outliers from historical and measured engine 
datasets. 
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Phase (B): customisation and calibration of the 
model for the investigated marine engine. This 
phase deals with extending an existing 
thermodynamic model and incorporating sub-
models representing the degradation of liquid 
main fuel injectors. This model is subsequently 
employed to derive simulated datasets 
representing the engine operation across a wider 
range of conditions compared to the available 
measurements. These datasets are then fed as 
input in Phase (C).  

 

Figure 1. Data-driven diagnostic model development 

methodology flowchart. 

Phase (C): development of data-driven (DD) 
models. This development is based on comparing 
three methods; namely, artificial neural networks 
(ANN) of the multilayer perceptron (MLP) type, 
Support Vector Machine (SVM), and k-Nearest 
Neighbor (KNN). Previous studies proved that 
MLP is the most effective to predict the health 
indicators of engine components [10]. However, 
SVM and KNN are also commonly used and 
easily set-up methods, which can be effective in 
several regression tasks [11], [12]. The developed 
data-driven models are trained and validated 
based on the extended datasets, whereas they 
will be tested by providing as input simulated and 
real testing datasets.  

The proposed methodology is demonstrated 
through the case study of clogged main fuel 
injectors for the investigated marine dual-fuel two-
stroke engine, for which considerable measured 
datasets from field measurements are available.  

3.1 Physical systems data 

The pool of the physical systems data consists of 
the following three dataset types: 

1. Performance data (shop test and field 
measurements) 

2. Maintenance parameters (healthy or non-
healthy labels) 

3. Sensor and measurement error margins / 
deviations 

The largest portion of data pertains to the engine 
performance parameters. These data are typically 
measured during shop tests or in the operation 
field (onboard the ship). Shop tests are conducted 
for the approval of the engine performance, with 
the engine tested on a propeller curve conditions, 
setting the load by a brake. Shop tests usually 
result in acquiring the highest amount of recording 
datasets, as more instruments/sensors are 
employed to provide confidence on the approval 
process.  

During field measurements, datasets for 
performance parameters are recorded while the 
vessel is operated, typically in a standard 
sampling rate of 1 min. The recorded raw datasets 
are fewer in number but higher in volume, 
compared the shop tests. For this study, the field 
data were acquired from WiDE, which is the 
integrated monitoring, diagnostic and digital expert 
system of WinGD [5].  

Maintenance parameters mainly state the health 
of a component as fully healthy or non-healthy. 
This information is derived from the date of 
overhaul or replacement of the respective 
component, according to the Planned 
Maintenance System (PMS) of the vessel, as well 
as the maintenance activities reports from Chief 
engineers. Unofficial feedback from Chief 
Engineers is helpful, as additional information for 
the component condition/state can be obtained, 
such as failures, number of components, or failure 
type/severity. This information is used to define a 
Health Index for each component, which is 
subsequently to train the data-driven degradation 
models. 

Errors of accuracy of sensor and measured 
parameters are used to define respective 
permissible deviation for the physics-based model 
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results. Table 2 lists all the recorded engine 
variables along with the respective measurement 
error according to the sensor technical 
specifications. This table also provides the 
availability of the recorded signal sensor in the 
field measurements. Nearly half of the signals are 
not recorded on field conditions, which could raise 
challenges for validating the physics-based model. 
The unavailability of field measured parameters is 

also associated with challenges to train and 
validate the data-driven models. This research 
gap is addressed herein by employing the derived 
simulation results from the physics-based model 
(or digital twin). However, the use of digital twins 
to provide virtual signals of non measured 
variables is out of this study scope.  

 

Table 2. Acquired signals and error margins. 

Signal Sensor  
error (%) 

ISO 15550 
permissible 
deviation (%) 

Field 
availability 

Considered 
for model 
validation 

Comment 

Engine power (load) n/a 3 Yes* No Setpoint 

Engine speed 0.02 2 Yes No Input 

Turbocharger Speed 0.02 2 Yes Yes - 

Servo oil pressure 0.2 5 Yes No Not used 

Main fuel rail pressure 0.2 10 Yes No Input 

Pilot fuel rail pressure 0.2 10 Yes No Input 

Temperature of main fuel 2 1.7 n/a No Input 

Wastegate position n/a 0 Yes No Not used 

Ambient pressure 0.04 0.5 Yes No Input 

Ambient temperature 2 0.7 Yes No Input 

Relative humidity 2 0 n/a No Input 

Air cooler pressure drop  2.5 10 n/a Yes - 

Air filter pressure drop  2.5 5 n/a Yes - 

Pressure after compressor 2.5 2 n/a Yes - 

Scavenging receiver pressure 2.5 2 Yes Yes - 

Cylinder compression pressure 0.5 5 Yes Yes - 

Cylinder firing pressure 0.5 5 Yes Yes - 

Pressure before turbine 2.5 5 n/a Yes - 

Pressure after turbine 2.5 5 n/a Yes - 

Temperature after compressor 2 0.9 n/a Yes - 

Temperature after auxiliary blower 2 0.9 n/a Yes - 

Temperature after air cooler 0.5 1.4 Yes No Input 

Temperature at air cooler water inlet  2 0.7 n/a No Not used 

Cylinder liner wall temperature 0.5 0 Yes No Input 

Temperature after cylinder 2 4 Yes No Not reliable 

Temperature before turbine 2 4 Yes No Not reliable 

Temperature after turbine 2 5.5 n/a No Not reliable 

Brake specific fuel consumption 
(BSFC) 

n/a 3 n/a Yes - 

*Calculated indirectly from acquired measurement 

 

 

It is noted that the engine load is not measured in 
field conditions. Instead, it is estimated by 
employing the measured engine speed and fuel 
injection energizing time along with engine control 
system (ECS) parameter maps and filters. The 
estimated load accuracy is adequate in this 
industrial application, because the ECS controls 
the engine speed only based on a speed setpoint, 
so a torque feedback signal is redundant. 

Additionally, torque meters, require frequent 
maintenance and recalibration activities. 

3.2 Data conditioning 

Processing the acquired data, is crucial to ensure 
reliable reference conditions for both the physics-
based model validation and the data-driven model 
development. The data conditioning approach is 
developed based on Haben et al. [13] comprising 
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several pre-processing steps for time-series data. 
These include data normalization, removal of 
outlier values, and the final mean value 
estimation. Data conditioning steps are described 
in the following paragraphs. 

Measured data derived from shop tests do not 
require any filtering or conditioning, as they are 
already collected during steady-state engine 
operating conditions. On the other hand, field 
measurements are subject to dynamic 
disturbances, even when the engine speed 
setpoint is constant, due to the prevailing 
environmental conditions and ship motions. 
Performance field operational data conditioning 
should be conducted prior to any data usage for 
model development. 

By searching within a certain time period (ideally 
for at least one hour of operation) considering the 
acceptable engine load change tolerance, the 
reference stead-state dataset can be identified. 
Subsequently, the outliers are excluded, and the 
mean value of this dataset is calculated. The 
criterion used to identify reference steady state 
conditions is provided in Eq. (1). This engine load 
change tolerance is derived empirically from 
historical performance data analysis of various 
WinGD engines. 

ꟾΔPrelꟾ 100 ≤ 1.5%                                             (1) 

Where ΔPrel is the relative engine power or engine 
load change (Pt+1–Pt)/PCMCR, whereas PCMCR 
denotes the CMCR power.  

The period being checked is one sampling ratio of 
1 minute. Provided that engine load change is well 
within the accepted tolerance of 1.5% for each 
sample data point in an one-hour operation, the 
dataset is stored and prepared for averaging.   

The reference steady state conditions are also 
confirmed by considering an additional criterion 
according to Eq. (2).  

ꟾQ1•[Prel – PrelMd]ꟾ 100 ≤ 3%                                (2) 

This implies that the first quartile (Q1) of the 
normalized against median value engine load data 
points of each one-hour window is within a 3% 
tolerance from the median value. This threshold is 
also chosen empirically from WinGD Operation 
Team experts. 

A final manual visual inspection is then carried out 
to ensure that the steady-state conditions 
determined by using Eq. (1) and Eq. (2) are 
reasonable. An example of an identified steady-
state operating point is shown in Figure 2, where 

the relative engine load change, as expressed by 
Eq. (1), is plotted against time. It should be noted 
that, occasional exceding the tolerance of 1.5% 
may be acceptable, provided that the rest of the 
data shows consistent values below the threshold. 
This is the reason a manual visual inspection is 
carried out, to avoid eliminating possible steady 
state cases. Engine load relative to the sample 
median value is shown on Figure 3.  

 

Figure 2. Engine load change on a 1-min basis for 1-
hour engine operation that is characterised as steady-
state based on Eq. (1). 

 

 

Figure 3. Quartile plot showing engine load subjected 
from the median dataset value of an 1-hour operation 
that is characterised as steady-state based on Eq. (2). 

In a few datasets, outliers above the 3% threshold 
were identified for Eq. (2), but since the whisker 
bars as shown on Figure 3 are well within this 
limit, the respective datasets are identified as 
steady state. 

Lastly, the analysis of other acquired variables 
time variations revealed that they follow similar 
trends as the engine load variation. Hence, this 
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study clusters the steady-state operation datasets 
based on the engine load signal.  

3.2.1 ISO corrections 

Prior to using the measured data, it is essential to 
correct them at the same reference conditions. All 
the performance parameters data (measured or 
simulated) are corrected to standard ISO 
conditions according to ISO 15550 [14] and ISO 
3046 [15]. The ISO corrections are used for a 
standardised correction of all performance 
parameters herein.  

According to the ISO correction process, the 
measured pressures and temperatures are 
corrected empirically considering the reference 
ambient conditions, scavenging temperature and 
exhaust backpressures. If a variable is not 
measured, such as the Δpaft.T (backpressure), it is 
assumed to have the same value as the 
respective reference value. Reference values are 
listed in Table 3.  

Table 3. ISO reference values 

Reference variable Value Unit 

pamb 1 barA 

Δpaft.T (CMCR) 300  mmWC 

Tamb 25 oC 

Tscav (CMCR) 35 oC 

LCVdiesel 42,707 kJ/kg 

LCVgas 50,000 kJ/kg 

Tcoolant 29 oC 

Fuel consumption can also be corrected by 
considering the reference lower calorific value 
(LCV). However, as LCV is not measured on field 
conditions, it is not used further than the shop test 
conversions. More details of fuel LCV data 
acquisition are found on Section 3.3.4. 

3.3 Physics based model 

A physics-based model is used to generate 
artificial data, outside the measured operating 
envelope, considering both the engine operating 
point (speed and load) and different fault levels. 
This model is based on WinGD initial Modular 
Simulation Platform (MSP), which was developed 
in the GT-Suite software [16]. The existing model 
is further customized to accommodate the faulty 
conditions. The MSP unique characteristic 
pertains to its modularity, which facilitates to set 
up new engine models, based on the extensive 
library of WinGD engine components. Similar 
modelling approaches have also been used in 
literature [17]. The layout of the model and the 

output signals are illustrated in Figure 4. The 
model is of the physics-based type for most 
components; however, it includes sub models 
using data lookup tables. Those components are: 

• Turbocharger manufacturer maps for 
compressor and turbine according to SAE 
standard. 

• Exhaust and wastegate valves, by considering 
a generic area-depending flow coefficient. 

• Auxiliary blower by using its manufacturer 
map. 

• Fuel injectors by using the fuel pressure and 
injection duration map, that generates fuel 
flow profiles.  

The model is set up for steady-state conditions. 
This means that the engine speed is provided as 
input (in the engine crankshaft module), whereas 
a PID fuel controller adjusts the fuel to achieve the 
ordered BMEP. The BMEP is estimated by the 
engine load and speed according to Eq. (4). 

BMEP = Prel•BMEPCMCR•(NCMCR/N)                             (4) 

Where Prel is the engine load (-), BMEPCMCR the rated 
BMEP (bar), NCMCR the rated engine speed (rpm) and N 
the engine speed (rpm). 

Several signals are not measured on field 
conditions. Figure 4 illustrates these with orange 
color. The model was firstly calibrated to match 
the shop test results corresponding to healthy 
conditions. The derived results along with their 
measured values are employed to estimate the 
pertinent percentage errors. Acceptable error 
margins are obtained considering the acceptable 
deviations reported in ISO 15550 [14].  

Most of the non-considered signals pertain to 
temperature measurements of exhaust gas. 
These measurements exhibit high dynamic 
variation within each engine cycle, thus rendering 
the comparison between model and measurement 
results extremely challenging. Furthermore, field 
measurements signals with erroneous values 
were identified, e.g., the temperature after the air 
cooler. Lastly, other signals such as the EWG 
opening angle and liner wall temperatures are 
also not considered for the model validation. The 
EWG opening is controlled by a PID controller 
correcting the scavenging pressure to a tuning 
based setpoint. As the control system model is out 
of the scope of this study, assessing the opening 
of the valve seems redundant. 
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Figure 4. Physics-based model and output signals layout. Red color denotes variables measured during shop tests 

and field; Orange color denotes variables measured during shop tests; Green color denotes control variables. 

Liner wall temperature or cylinder walls 
temperatures are used as input considering their 
load dependency. Further details on the main 
engine sub model systems are provided in the 
following paragraphs.  

3.3.1 Flow model 

GT-Suite is a 1D/0D modeling tool, which 
essentially solves the Navier-Stokes equation [18] 
for each flow volume, split in three parts for 
explicit solvers; the conservation of mass, 
conservation of energy and momentum. The 
discretization length is chosen in a way to run the 
model in reasonable computational times, and 
accuracy to be within the desired levels. Certain 
components such as air filters and air coolers, 
where a moderate pressure drop occurs, the 
discharge coefficient is tuned to match the shop 
test values at the CMCR point. 

3.3.2 Cylinder model 

The cylinder model, which is a 0D model, consists 
of numerous sub models, such as the heat 
transfer model coupled with a wall temperature 
template, the combustion model, the scavenging 
model, the friction model and the input and output 
flow connections. The input connections regard 
the air flow through the intake ports and the fuel 
injection. Exhaust valve is the only component for 
output flow connections. 

3.3.2.1 Heat transfer 

The in-cylinder heat transfer model within GT-
Suite is the Woschni GT model, which is an 
adjustment of the well-established Woschni model 
[19], by eliminating the swirl factor and using one 
common heat multiplier for all sources. This 
multiplier is subject to tuning for different loads 
and speeds. 

3.3.2.2 Combustion 

For the combustion, the DIPulse object is used, 
which is the most common template for diesel 
engines. According to the model designer, the 
basic approach of this model is to track the fuel as 
it is injected, evaporates, mixes with surrounding 
gas, and burns. As such, an accurate injection 
profile is necessary to achieve meaningful results. 
This model has been previously calibrated with in-
cylinder pressure data of a similar size engine, as 
there are not available for the investigated system 
of this project. The fuel injection is performed via 
already generated profiles, depending on fuel 
pressure and injection duration. The flow profile is 
generated using the CFD model for the 
investigated engine injector. Manufacturer 
characteristics are taken into account and 
experimental conditions are applied as input to the 
CFD model, which in return provides the resulting 
massflow time profile. 

3.3.2.3 Scavenging and friction models 

The cylinder scavenging process is modeled with 
an empirical exhaust residual ratio to a cylinder 
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residual ratio curve, which is provided as input the 
GT-Suite.  

The friction model used on the engine crankshaft 
is based on the Chen-Flynn model [20] and is 
adapted for the WinGD marine two-stroke 
engines. 

3.3.3 Degradation model 

The main faulty condition for the injector nozzles, 
as appeared on numerous field data, is nozzle 
clogging. The effects of this fault are explored in 
literature [9], [21] via experimental tests in 
laboratory conditions on a four-stroke marine 
diesel engine and simulations. The decreased 
flow area, the temporally increased fuel injection 
pressure, and pronounced in-cylinder mixture non-
homogeneity [22], [23], [8] cause combustion 
deficiencies, exhaust gas temperature increase, 
as well as decreased maximum cylinder pressure, 
and mean effective pressure.  

In order to reflect those symptoms on the DIPulse 
combustion model, three parameter multipliers are 
introduced; one for the injector cross-sectional 
area, one for the combustion efficiency in the form 
of diffusion combustion rate, and one for the heat 
transfer accommodating the increased gas 
temperature. The latter is inversely proportional to 
wall temperatures, but since wall temperatures are 
imposed as input in the model, they are being 
used as tunable parameters depending on the 
clogging level. From the field data, it cannot be 
identified if a specific nozzle or injector of a 
cylinder is defective. As a result, this degradation 
model represents a whole cylinder, including all 
fuel injectors. Eq. (5), (6) and (7) show the effects 
of those mentioned multipliers. 

ṁclog = Cclog ṁ                                                     (5) 
 
hclog = h f1,clog                                                (6) 
 
Cdf,clog = Cdf f2,clog                                         (7) 
 

Where: 

ṁ         injected massflow rate (kg/s) 
Cclog     injector clog factor (-),  
            0: fully clogged and 1: healthy 
ṁclog     injected mass flow rate  
            for clogged injector (kg/s) 
h          heat transfer multiplier 
hclog      heat transfer multiplier 
            for clogged injector (-) 
f1,clog     function adjusting the heat transfer  
            for  clogged injector 
Cdf       diffusion combustion rate multiplier (-) 
Cdf,clog  diffusion combustion rate multiplier  

            for clogged injector (-) 
f2,clog     function adjusting the diffusion  
            combustion rate for clogged injector 

Functions, f1,clog and f2,clog, have the role to 
proportionally adjust the effect of injector clogging 
on heat transfer and combustion rate respectively. 
The factors within the function, as well as general 
heat transfer and combustion rate coefficients, are 
all calibrated after optimization on both healthy 
and non-healthy conditions. The considered 
objective function considers the errors on 
maximum pressure and compression pressure 
(simulation against measured values).  

3.3.4 Physics based model uncertainties 

Despite the physical nature of most of the engine 
model subsystems, there are uncertainties that 
remain and could lead to possible inaccuracies or 
discrepancies. The most significant ones are 
highlighted herein: 

• Unavailability of in-cylinder pressure profiles. 
The current engine used for the conducted 
study is not collecting the cylinder pressure 
profiles, whether in shop test or field 
conditions. This information would be useful to 
further tune the engine model to the measured 
data. 

• Scavenging function. The 0D nature of the in-
cylinder flow model and the lack of 
measurement capabilities for trapped masses, 
makes it practically impossible to validate any 
scavenging effect with certainty. This may 
lead to possible deviations on in-cylinder 
pressures, temperatures and trapped mass. 

• Exhaust valve lift profile. The exhaust valves 
in this engine are solenoid type valves, for 
which the lift profile is not recorded. Instead, a 
typical profile for a similar engine has been 
used, which is derived from the WinGD model 
library. 

• Fuel LCV. For operational field conditions, the 
engine fuel LCV is not recorded. Even though, 
fuel analysis reports are available to the 
authors on a bi-yearly basis, it is not certain if 
the reported fuel is being used for the next 
period. As a result, the LCV of fuels is always 
chosen to have an average value of those 
reports.  

• Engine load measurement. On field 
conditions, there is no torque meter installed. 
As a result, the engine load is calculated by 
combining the engine speed signal, with 
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empirical and correctional maps of the 
injection duration. This provides an estimated 
engine power signal that is used herein. 

3.3.5 Physics based model validation 

The physics-based model is validated against 
shop test data and healthy and non-healthy field 
conditions. Both datasets are subject to ownership 
of WinGD, and as they are regarded sensitive and 
confidential information, only normalized and 
relative information is shown. 

The model is assessed based on the maximum 
value between ISO permissible deviation and 
sensor error, as expressed on Table 2. The error 
between model and test data point is calculated 
according to Eq. (8). 

ue = (xi - ẋi) / ẋi                                                     (8) 

Where ue is the relative error, xi the model result 
and ẋi the test result. All data are compared in SI 
units. 

3.3.5.1 Shop test data validation 

The first stage of the model validation is the 
comparison with shop test data. As previously 
reported, shop tests are conducted prior to the 
engine being installed on the vessel, thus results 
show the most consistent and healthy engine 
conditions. These shop tests data are final 
recordings, where the engine tuning is approved 
to the desired performance criteria, such as power 
and emissions outputs according to agreements 
and legislation. Shop test model percentage errors 
are shown in Table 4.  

Table 4. Model to Shop test data relative error for 
main FPP operating points. 

Variable  Percentage error ue (%) 

Engine load (%) 100 75 50 25 

Scav. pressure ISO 0.2 -0.53 -0.03 5.33 

TC speed -0.48 -0.35 -0.71 -7.51 

Cyl. Pr. Comp. Mean ISO 0.97 0.03 -0.36 5.35 

Cyl. Pr. Fir. Mean ISO 0.34 3.38 -0.41 3.11 

DP Air filter -0.02 -0.12 -0.2 -0.17 

DP Air cooler 0.01 -0.13 -0.42 -0.27 

Press. Bef. Turbine -1.15 -2.59 -2.41 5.04 

Press. Aft. Turbine -0.13 -0.19 -0.11 0.13 

BSFC ISO -0.89 0.08 -0.63 -0.09 

For in-cylinder variables, only the mean value is 
shown, because the test showed minimal variation 
per cylinder. From the results, it is visible that the 
model has highly acceptable accuracy for most of 
the load points, except the 25% load. On this 
operation point, the auxiliary blower is turned on. 
The blower is a fixed speed compressor, which is 

modeled via a map-based approach. One 
uncertainty is that the manufacturer map is 
referenced to different conditions from what the 
engine is running. The reference conditions of the 
blower are 2.2 bar of air pressure and 20oC of air 
temperature. The air conditions on this operating 
point on the engine are ~1.6 bar and 15oC. This 
difference followed by the less accurate 
turbocharger map on low design speeds [24], 
reflect on the accuracy of the engine model. Field 
data review reveals that operation on low loads is 
frequent, something that impacts the data-driven 
models accuracy. 

3.3.5.2 Field data validation 

Field steady state operational data were identified 
with the approach explained in section 0. The 
period searched was around 1.5 years of 
operation, starting from the initialization of digital 
monitoring systems on the vessel, until the first 
months of operation upon replacing the 
investigated components; main fuel injector 
nozzles. This period range contains both healthy 
and non-healthy conditions, which depend on the 
replacement date of the injector nozzles. In total 
the diesel mode steady-state operating conditions 
identified were 22 test cases. Out of them, 17 
were deemed faulty and the rest 5 of them 
healthy. These operating points are visible on an 
engine speed-power map on Figure 5, along with 
the propeller curve, the maximum limit line and 
light running margin line.  Those three propeller 
lines are typically defined according to the engine 
designer [25].  

 

Figure 5. Measured steady-state operating points from 
the field on the engine load and speed map. 

By examining Figure 5, it seems most healthy 
operating points fall on low load areas, whereas 
faulty operating points on high engine load areas. 
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This has a reflection on the engine model 
validation, because as seen in Table 4, the 
highest errors appear on the lowest engine load of 
25%. The errors of the physics based model on 
those operating points are visualised in Figure 6 
and Figure 7 for healthy and faulty conditions 
respectively.  

 

Figure 6. Model error on field measurement for healthy 

injector nozzle condition. 

The two plots show boxplots, indicating the mean 
error value, the box with the inter-quartile range 
(IQR) from Q1 to Q3 and whiskers ranging to 1.5 
times the IQR distance. Any data beyond the 
whisker range is deemed as an outlier. The light 
blue bars show the total uncertainty of the variable 
from Table 2. P.cyl. Ratio refers to the ratio 
between in-cylinder firing and compression 
pressure. This is an important variable for field 
conditions, where the compression and firing 
pressures do not necessarily have the same level 
of error. Additionally, as it will be seen on section 
3.3.6, it is an important variable for data-driven 
model training. 

Healthy conditions errors are reflecting the model 
general inaccuracy in low engine loads as 
expected. This is particularly profound on the 
injector duration variable. In field conditions, 
especially at low loads, due to various operating 
uncertainties, the duration shows a quite high 
deviation. The causes are not easy to identify, as 
several boundary and environmental conditions 
are not monitored, ex. dynamic maneuvering 

faster than the sampling ratio of recorded data (1 
min.), heavy sea, etc. For faulty conditions, as the 
operating points include both low and high engine 
loads, the model performs better in terms of 
accuracy.  

The model mean errors for the recorded variables  

 

Figure 7. Model error on field measurement for faulty 
injector nozzle condition.  

fall within a 5% range, whereas extreme values 
shown by whiskers range from 5% to 10%. 

3.3.6 Extended training and testing data 
envelope 

Upon customizing and validating the physics-
based model, which includes individual cylinder 
injectors fault degradation, a DoE was set up to 
generate adequate operating points for data-
driven diagnostics model training. The DoE 
consists of 3 main essential parameters 
alternations: Engine speed, Engine power and the 
injectors clogging factor. A base speed-load map 
of points covering most of the operating range is 
replicated for different levels of injector clogging. 
The injector clogging factor however is alternating 
for different levels of degradation on each cylinder 
individually. The objective is to generate data 
points to train one cylinder heath index model. 
This reduces effectively the total number of tests 
to 6,672 points. The diagnostic application of 
course is can be applied on each cylinder. 
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3.4 Data-driven model development 

The layout of inputs and outputs of the data driven 
model for this diagnostic purpose of the study is 
shown in Figure 8.  

 

Figure 8. Data-driven model i/o flowchart. 

The problem of quantifying the health condition of 
a clogged injector requires a regression type 
solution. Among the various data-driven methods 
found in literature and academic books, most 
profound for diagnostics and condition monitoring 
of engines and components are: Deep or 
Convolutional Neural Networks (NN) [26], [27], 
[10] k-Nearest Neighbors (kNN) [28], [11] Support 
Vector Machines (SVM) [12] and linear regression 
[29]. The advantages and disadvantages of each 
method are summarised and described in 
literature [30], [13]. Those four methods are 
selected for the scope of this project. The steps 
for the full model development process as 
described on Figure 1 are: 

1. Feature selection 

2. Model hyper-parameter tuning 

3. Model training 

4. Model validation 

The data-driven model development is conducted 
on Python 3.9.12 environment utilizing the most 
common libraries such as Pandas, Numpy, 
Matplotlib, Skitlearn and Tensorflow.  

3.4.1 Feature selection 

Before the training of any data-driven model, the 
input features with the highest correlation factor 
should be found and selected. Due to the fairly 
limited number of measured variables, features 
which are not so highly correlated are also 
considered. The Spearman method [31] is 
selected for feature correlation, as it captures non-
linear connections between the features. Table 5 
shows the most correlated features. All features 
are normalization to a [0,1] min-max scale. 
Excluding the engine load and speed, which are 
the necessary independent inputs, the highest 
correlated features include the injection duration 
compared to healthy shop test values, the injector 
health condition of the other cylinders, the cylinder 
pressure ratio, the cylinder compression and 

maximum pressure, the exhaust gas temperature 
downstream the cylinder and the scavenging 
pressure. The ‘Reference FPP’ term refers to the 
ratio of the signal to the equivalent signal in 
healthy shop test conditions. Interestingly, several 
non-measured values such as maximum cylinder 
temperature, are very highly correlated to the 
injector fault. Although, most of those variables 
cannot be measured, they could be acquired with 
the help of a digital twin model. The exploration of 
a supportive digital twin on this methodology 
however, is outside the scope of this study. Lastly, 
the crankangle of the maximum cylinder pressure 
is also stated because it is typically offered 
through fast signal cylinder pressure 
measurements, however for this engine it was not 
available. 

Table 5. Input features correlation to the injector 
nozzle clogging factor for cylinder #1. 

No. Feature  Correlation to  
Inj. Clogging 

1 Inj. Dur. Reference FPP 0.47 

2 Injector clogg factor Cyl. 2 0.63 

3 Injector clogg factor Cyl. 3 0.44 

4 Injector clogg factor Cyl. 4 0.28 

5 Injector clogg factor Cyl. 5 0.12 

6 P. cyl ratio #1 0.43 

7 T. After Cyl.Reference FPP #1  0.39 

8 P. Cyl. Max Reference FPP #1 0.21 

9 P. Cyl. Comp. Reference FPP #1 0.09 

10 P. Scav. 0.03 

n/a T. Cyl Max #1 0.89 

n/a Lambda trapped mass #1 0.66 

n/a P. Cyl. Max Crankangle #1 0.08 

Afterwards, a parametric analysis is performed 
between feature no.6-10, to find the optimum 
number of measured features, by training a data-
driven method (kNN) for each number of features. 
Results of this analysis are illustrated on Figure 9. 
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Figure 9. kNN model error to testing data for multiple 
input features. 

The results shown on these plots refer to a 15:85 
test-train split of the data of all the simulated 
dataset (black bars) and the whole field dataset 
(purple bars). The kNN method used here, is 
tuned for minimum mean error. Figure 9 shows 
the RMSE in a whisker bar plot, whereas the 2 
standard deviations range is the height of the bar. 
It is clear from the results that with 9 to 10 
features, the error minimizes. That is despite the 
fact that the last two features have a fairly low 
correlation factor. For the purposes of examining 
further the results of the data-driven methodology, 
10 features are selected for model training and 
testing. 

3.4.2 Model hyper-parameter tuning and 
training 

Data-driven methods from the four selected ones; 
MLP, kNN, SVM and linear regression, are having 
their individual respective hyperparameters tuned 
for the minimum possible errors and highest R2 
values, in order to find the optimum method for the 
required task. As an example, MLP is having the 
number of hidden layers and number of neurons 
for each layer optimised. This process is done 
automatically within the Python environment. Each 
method is then being trained with the same 
dataset, which consists of 85% of the DoE 
simulated data. The rest 15% of these data is 
used for testing the methods. 

3.4.3 Model validation 

Validation of each method is conducted with 
simulated data, as well as field test data. The field 
test data are derived from the same dataset used 
to tune and calibrate the physics-based model for 
healthy and faulty conditions, as shown on 
paragraph 3.3.5.2. The field test data is useful to 
effectively evaluate the whole methodology in a 
real-world scenario, albeit a limited one.  

3.5 Data-driven model application 

The initial purpose of this diagnostic methodology 
is to apply a per cylinder health index, showcasing 
the current condition of a chosen component, in 
this case an injector nozzle. As this application 
cannot be demonstrated in the framework of this 
study, because it requires a prepared digital 
environment on a real vessel, nevertheless the 
validation and value creation of such a 
methodology is well illustrated. The final 
diagnostic model is demonstrated on selected 
operational data of the investigated engine in 
Section 4. 

4 RESULTS AND DISCUSSION 

The outcome of the feature selection showed that 
most effective number of input features, excluding 
engine speed and load, is 10. In this Section, the 
four selected methods are evaluated in terms of 
performance; namely lowest errors and highest 
correlation with reference data. Summarized 
results are shown in Table 6 and Table 7 for 
simulation and field test data respectively.  

Table 6. Data-driven methods errors to Simulated data. 

Method R2  RMSE MAPE 

MLP 0.86 0.03 0.03 

KNN 0.86 0.03 0.02 

SVM 0.99 0.01 0.00 

Linear Reg. 0.91 0.02 0.02 

Results against simulated data show advantage of 
the SVM methods, however all models show high 
R2 and low error values. 

Table 7. Data-driven methods errors to Field data. 

Method R2  RMSE MAPE 

MLP 0.47 0.04 0.03 

KNN -0.37 0.06 0.05 

SVM -1.45 0.08 0.06 

Linear Reg. 0.30 0.04 0.03 

The method performance on field data on the 
other hand, shows many differences to simulated 
data. Here the clear advantage is on the MLP 
method, as it shows the highest R2 and lowest 
errors simultaneously. This interesting result 
indicates the differences of simulated and real-
world testing data regarding data training 
diagnostic models. A better illustration of those 
errors for simulated and field data can be seen in 
Figure 10.  
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Figure 10. Parity plots for kNN and SVM model results 

against reference data for 3 input features. 

Results show model vs reference data for the clog 
health condition in a normalized format, where 1 
means fully unclogged and 0, the maximum 
clogged level, as derived from simulations with the 
criteria being the lowest acceptable burned fuel 
fraction. The plots show that all models behave 
similarly for simulated test data, albeit their error 
differences. Even though the MLP has the lowest 
R2 and highest errors for simulated data, for field 
data the results show the opposite. This makes 
the MLP model a more robust choice for such 
purposes. An interesting finding is the satisfactory 
performance of the simple linear regression 
model.   

For a final step in the model validation on the 
MLP, validation against test data with the K-Fold 
cross validation method [32] is also performed. 
Essentially, the simulated database is split into 5 
folds, with each fold containing a 85:15 split of 
training and testing data. Then each fold is further 
tested against the same field test data. Results 
this folded validation are seen on Figure 11. 

Judging from the cross-validation results, the MLP 
model shows solid consistency as RMSE is close 
to the mean error value across the different folds. 

 

Figure 11. Cross validation for 5 different data folds for 
KNN model against simulated and field test data. 

This ensures that the model training is adequate 
in predicting a health index of the particular 
injector nozzles of the investigated system. 

5 CONCLUSIONS 

This study demonstrated a development 
methodology for a data-driven approach to 
diagnose a faulty liquid fuel injector on a marine 
two-stroke engine. The methodology starts with 
the utilisation of experimental data in shop tests 
conditions to tune and customize a physics-based 
model in GT-Suite environment. Further test data 
from the operating field conditions, upon 
conditioning and clustering as healthy or faulty, 
are incorporated in tuning of a degradation sub-
model within the physics-based model. This full 
engine model is used to generate through a DoE, 
simulated data for various operating points in 
several health level conditions of the injector. 
Finally, a data-driven model is trained and tested 
through different stages. Results show that the 
most suitable regression model for this purpose 
was the MLP NN. The highlighted outcomes are 
as follows: 

• A physics-based model with degradation 
characteristics is very useful to fill in 
experimental test gaps and train a data-driven 
algorithm to various faults. Potential 
discrepancies of the degradation model and 
capturing effectiveness of the faults, reflect on 
the accuracy of the diagnostic methodology. 

• Limitations on the number of measured 
variables pose a barrier on the development 
of diagnostic algorithms. Several highly 
correlated variables with the investigated 
component are not measured. As a result, the 
full potential of the diagnostic methodology 
cannot be demonstrated. 
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• For the investigated system and scenario of 
clogged injectors, the most suitable data-
driven method is the MLP. That is in line with 
observations of previous studies in literature.  

In conclusion, the coupling of data-driven 
techniques and engine models to the diagnostics 
of faults within the marine engine environment, 
show high potential of accurately detecting and 
isolating the health condition of components. This 
study results provided confidence in the methods 
demonstrated, as well pathways for improvement 
in the areas of the data acquisition and 
development process. Future studies could further 
be expanded in multi-variate faults of different 
components. Finally, predicting the health 
conditions, will improve condition based and 
predictive maintenance schemes and such a road 
path shall certainly build a solid foundation for 
autonomous shipping in the maritime industry.  

6 ABBREVIATIONS & NOMENCLATURE 

Abbreviation list 

ANN: Artificial Neural Network 

CFD: Computational Fluid Dynamics 
CMCR: Contracted Maximum Continuous  

Rating 

DoE: Design of Experiment 

ECS: Engine Control System 

EVC: Exhaust Valve Closing 

EVO: Exhaust Valve Opening 

EWG: Exhaust Wastegate 

FPP: Fixed Pitch Propeller 

IMO: International Maritime Organization 
ISO: International Organization for 

Standardization 

kNN: k-Nearest Neighbour 

LNG: Liquified Natural Gas 

MAPE: Mean Average Percentage Error 

MDO: Marine Diesel Oil 

MLP: Multi Layer Perceptron 

MSP: Modular Simulation Platform 

PID: Proportional Integral Derivative 

PMS: Planned Maintenance System 

SAE: Society of Automotive Engineers 

SVM: Support Vector Machines 

WC: Water Column 

WiDE: WinGD integrated Digital Expert 

  

Nomenclature list 

Amb Ambient conditions 

BMEP: Brake Mean Effective Pressure (bar) 

BSFC: Brake Specific Fuel Consumption (g/kWh) 

P Power (kW) 

Dp: Delta Pressure (bar) 

LCV: Low Calorific Value (kJ/kg) 

RMSE: Root Mean Squared Error 
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