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ABSTRACT

Digitalization provides multifaceted opportunities to enhance internal combustion engine (ICE)
technology, thereby addressing global challenges such as climate change, environmental pollution,
and conservation of resources. In particular, methods from the field of artificial intelligence and its
subfield machine learning have become increasingly powerful in recent years. This study focuses on
facilitating a condition monitoring approach for the running surface of cylinder liners in large ICEs,
which provides an opportunity to avoid out-of-spec function, unforeseen downtime, and premature
component replacement. This approach requires quantitative condition detection of the running
surface topography. However, accurate in-situ surface topography measurements are currently not
possible. The current reference method requires disassembly and cutting of the liner before the
surface topography can be measured with a sophisticated confocal microscope. Correspondingly,
component reuse and further condition assessments at later stages become impossible. This paper
presents an approach that overcomes this issue: the combination of surface images obtained with a
simple optical device and deep learning. To develop the deep learning model, a database consisting
of approximately 100 liners from INNIO Type 6 gas engines with varying histories was created from
scratch. First, the liners were cut and high-resolution depth maps of relevant surface areas were
measured following the reference method. Second, comparatively low-resolution RGB reflection
images of the same areas were taken with a simple handheld microscope. By employing convolutional
neural networks and adversarial learning techniques, the reference equivalent can be predicted from
simple device images. This enables the reliable prediction of the surface topography and yields
derived information with sufficient accuracy for detection of liner running surface condition. It is
expected that the training database must be expanded to further enhance prediction accuracy. Since
sourcing, cutting, and measuring of suitable cylinder liners requires considerable effort, a concept that
generates a generic database for model training is presented. Geometries similar to those of a liner
honing structure are created in a sandbox and measured with a stereo vision camera that provides
both depth and reflection images. This permits easy and quick generation of a large amount of data.
These images can be utilized to train deep learning methods similar to those employed for the liner
images.  Current research focuses on evaluating whether real liner depth images can be accurately
predicted with a model trained with generic data. Field application of the investigated approaches is
thought to be possible and has the potential to enable condition-based and predictive maintenance
approaches.
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1 INTRODUCTION 

Large engines are well established energy convert-
ers in applications such as power generation and 
transportation on land and at sea [1–3]. Digitaliza-
tion provides multifaceted opportunities to enhance 
internal combustion engine (ICE) technology, 
thereby addressing global challenges such as cli-
mate change, environmental pollution, and conser-
vation of resources [4]. 

Condition monitoring (CM) and related condition-
based maintenance (CBM) and control approaches 
for ICEs are key tools to increase engine durability 
and to conserve resources by exploiting more of 
the useful lifetime of engines and their components 
while avoiding critical operating conditions due to 
wear and failure [4]. In the recent past, the exten-
sive instrumentation of ICEs and their subsystems 
as well as the availability of advanced and powerful 
machine learning (ML) data analytics methods 
have resulted in a variety of CM, CBM, and control 
concepts for entire engines [5–7] as well as for in-
dividual components such as sliding bearings [8–
10], flexible couplings [11, 12], torsional vibration 
dampers [11, 13], fuel injectors [14–16], and cylin-
der liners [17–20]. Such concepts are particularly 
relevant for large ICEs since the effort taken for CM 
is comparatively small in relation to the overall en-
gine investment at stake. In addition, the trend is for 
the spatial restrictions for instrumentation to de-
crease as engine size increases. 

1.1 The condition monitoring process 

Condition monitoring (CM), the process of which is 
illustrated in Figure 1, is defined as “activity, per-
formed either manually or automatically, intended 
to measure at predetermined intervals the charac-
teristics and parameters of the physical actual state 
of an item” [21]. According to Weck [22] and based 
on similar summaries in [4, 9], CM can be divided 
into the following subtasks:  

1. Condition detection: One or more informative 

parameters reflecting the current condition of 

the machinery are acquired. 

2. Condition comparison: The actual condition 

is compared with a reference condition of the 

same parameter, thereby generating “symp-

toms” as input to the diagnosis task. 

3. Diagnosis: The results of the condition com-

parison are evaluated and the type and location 

of failure are determined. 

The diagnosis results determine which of several 
subsequent activities is triggered: 

• Wear/damage compensation: Impaired ma-

chine performance caused by wear or other 

forms of damage may be fully or at least partly 

compensated for by control systems which en-

sure minimal performance losses for as long as 

possible [22]. 

• Preventive maintenance: Early failure indica-

tors may also be used for preventive mainte-

nance, which is defined as “maintenance car-

ried out intended to assess or to mitigate deg-

radation and reduce the probability of failure of 

an item” [21]. In Figure 1, the preventive 

maintenance is additionally classified as con-

dition-based since it includes “assessment of 

physical conditions, analysis and the possible 

ensuing maintenance actions” [21]. If a fore-

cast of significant parameters of the degrada-

tion of the item is involved, CBM can be sub-

categorized as “predictive” [21]. 

• Corrective maintenance is “carried out after 

fault recognition and intended to restore an 

item into a state in which it can perform a re-

quired function” [21]. 

As outlined in detail in [4], the potential of ML ap-
proaches may be exploited in various ways within 
the three subtasks of CM and the additional activi-
ties following the diagnosis. The present study fo-
cuses on the condition detection subtask. The chal-
lenge is that the informative parameter (or more 
generally the relevant information) for condition de-
tection cannot be directly measured by a related 
sensor. Thus, a virtual sensor concept is employed 
in which a different type of information is measured 
and used as an input to a data-driven model that 
predicts the actual information needed for condition 
detection. The data-driven approach is required be-
cause a physical model would be either too com-
plex or not accurate enough. 

 

Figure 1: Condition monitoring process and subse-
quent activities based on Weck [22]. 
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1.2 Cylinder liner condition detection 

The specific technical problem dealt with in this 
study is the condition detection of the inner surface 
of cylinder liners, which acts as a running and seal-
ing surface for pistons and piston rings and is thus 
critical to failure-free operation of the engine [23]. 
The tribological interaction in the piston-piston ring-
cylinder system is determined by surface charac-
teristics and the surface topography in particu-
lar [23]. 

One well-established process that achieves a de-
fined and appropriate surface topography is the 
plateau honing process. On the one hand, it cre-
ates a fine plateau structure to minimize friction. On 
the other hand, comparatively deep grooves with a 
defined pattern ensure optimal oil retention [23]. 
Figure 2a) presents an example section of a sur-
face topography from a plateau honing process. 
Such a surface structure can be characterized by a 
material ratio curve (MRC, also known as Abbott-
Firestone curve, cf. Figure 2b), which represents 
the height of a relative share of the surface which 
is exceeded by it [24–26]. To describe the essential 
topography of a surface in compressed form, tex-
ture parameters according to EN ISO 25178-2 can 
be derived from the material curve [27]. They in-
clude the core height (Sk), the reduced peak and 
valley heights (Spk and Svk), the material ratios of 
the peaks and valleys (SMr1 and SMr2), the peak 
material volume (Vmp), and the valley void volume 
(Vvv). During engine operation, the liner is subject 
to continuous wear because of the relative move-
ments and related metal-to-metal contacts in the 
piston-piston ring-cylinder system. In turn, this 
leads to deterioration of the liner running surface 
(i.e., an unfavorable change in surface topogra-
phy), which impairs hydrodynamic lubrication and 
increases friction and thus the risk of damage to the 
engine [24]. 

Condition detection of cylinder liners is particularly 
challenging because the running surface is not ac-
cessible during engine operation. Indirect methods 
such as vibration measurement or lubricating oil 
analysis permit continuous monitoring [28]. In par-
ticular with the latter, however, quantitative and po-
sition-related wear determination is not possible. In 
contrast, position-related wear assessment of the 
inner surface of the liner based on subjective visual 
inspection with the naked eye is feasible during en-
gine standstill, but precise quantification is not pos-
sible. Given the fine surface structure, this can only 
be achieved in a process involving high-perfor-
mance microscopic surface topography (i.e., depth) 
measurements which require the liner to be disas-
sembled, cut into segments, and then examined in 
a laboratory, cf. Figure 3a). Due to the necessary 
destruction of the cylinder liner, further use and re-
peated measurement of wear is impossible. 

 

Figure 2: Cylinder liner plateau honed running sur-
face and corresponding topography characteriza-
tion by the material ratio curve. 

The objective of the present study is to investigate 
if this issue can be overcome by a simplified pro-
cess (cf. Figure 3b) in which ordinary color (RGB) 
surface images are obtained with a comparatively 
small and simple optical device that fits into the cyl-
inder bore (e.g., mobile phone camera or small 
handheld microscope) and then used to acquire re-
liable, quantitative surface depth information with 
the help of computer vision methods, cf. Section 2. 
In turn, this could facilitate an overall CM approach 
for the running surface of cylinder liners in large 
ICEs, which provides a valuable opportunity to 
avoid out-of-spec function, unforeseen downtime, 
and premature component replacement. 

While the main goal described above (including re-
lated subtopics) has already been pursued in pre-
vious studies [17–20], this paper also presents a 
novel approach to extending the training database 
for the computer vision methods to include generic 
data. This has the potential to significantly reduce 
the overall effort require to generate a sufficiently 
large training database.
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Figure 3: Comparison of currently used and simplified cylinder liner condition detection processes.

2 GENERAL METHODOLOGY 

[4] describes how the usage of ML data analytics 
methods for enhancing large engine technology is 
commonly based on specific technical objectives in 
combination with the hypothesis that the correla-
tions inherent in an associated database will allow 
these objectives to be achieved with ML ap-
proaches. Such hypotheses are often generated by 
experts who have significant domain knowledge in 
the field of large ICEs. To determine whether a hy-
pothesis can be confirmed, the data-driven meth-
odology illustrated in Figure 4 is applied by the 
Large Engines Competence Center (LEC). Indi-
cated by the three arrows, it covers the entire spec-
trum from data generation to knowledge discovery 
and knowledge application. 

 

Figure 4: The data-driven methodology applied by 
LEC [4]. 

Data generation and management, the first 
stage, deals with methods that generate, acquire, 
transmit, and store data, yielding a database that 
provides a solid foundation for further tasks as de-
scribed below. The selection of suitable measure-
ment parameters and the employment of advanced 
sensor and data acquisition systems play key roles. 
Design of experiments (DoE) is a valuable tool for 
efficiently generating databases suitable for em-
ployment in a data-driven context. 

In the knowledge discovery stage, the overall ob-
jective is to obtain new insights, expressed as the 

discovery and the modeling of still unknown or un-
confirmed correlations. In addition, there is the po-
tential to obtain a significant gain in domain 
knowledge by considering the entire spectrum of 
different ML and statistical methods [4]: From ex-
plorative correlation analyses to easily interpretable 
statistical regression models, to classical ML meth-
ods such as clustering algorithms or support vector 
machines, to highly sophisticated neural networks 
for deep learning, a problem-related trade-off be-
tween the required complexity, interpretability, and 
performance is achieved. This ensures that models 
are both accurate and as easily understandable as 
possible. The obtaining of new insights through the 
utilization of optical data in particular falls into the 
domain of computer vision, an interdisciplinary re-
search field that studies how machines process 
and interpret image data. Today a vast number of 
implemented solutions are based on artificial intel-
ligence or ML methods. They have achieved out-
standing results in various applications, especially 
with deep learning—a subfield of ML that is essen-
tially based on deep neural networks. 

In the last stage of the data-driven methodology, 
knowledge application is achieved either by inte-
grating technology in an application (e.g., virtual 
sensor in a CM/CBM framework, as outlined in 
Section 1) or by taking the knowledge gain as an 
incentive for further research and development 
work. 

In the present study, the main hypothesis is that a 
correlation exists between the information con-
tained in an ordinary RGB image of a liner running 
surface and the corresponding surface topography, 
i.e., the related surface depth information. The 
data-driven methodology is applied to evaluate 
whether this hypothesis can be confirmed and if the 
correlation (given its existence) is significant 
enough to be employed in the pursued condition 
detection application. 
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One of the main challenges emerges right away in 
the data generation and management stage. The 
first and obvious approach (Figure 5a) was to 
source, cut, and measure real cylinder liners. A cor-
responding image database was created relying on 
both sophisticated reference and simple hand-held 
microscope measurements to obtain depth and 
RGB image information, respectively, at the same 
cylinder liner running surface locations. However, 
the database in its current state is comparatively 
small for computer vision purposes (2,850 image 
pairs from approximately 100 cylinder liners) and its 
generation involved considerable effort, which will 
make it difficult to significantly expand the database 
in the future. Yet expansion of the database could 
be the key to enhancing the accuracy of related 
data-driven models generated during the 
knowledge discovery stage that predict surface 
depth information from RGB images. 

 

Figure 5: Real liner vs. generic approach for image 
database generation. 

As a result, a second, generic approach to data-
base generation (Figure 5b) was followed. In this 
approach, a “sandbox” was used to replicate 
groove and plateau structures as they are found on 
the running surface of real liners. These structures 
were then measured with a 2-in-1 monocular/ste-
reo vision camera able to obtain depth as well as 
RGB data of the same structure. Overall, the pro-
cess of structure generation and related measure-
ment is simple and fast, allowing efficient genera-
tion of a large database. 5,000 image pairs have 
been created, but the potential exists to signifi-
cantly extend the database with comparatively little 
effort (a few weeks compared to several months or 
even years with the real liner approach). Yet de-
spite its similarity, the image data obtained does 
not include real liner structures. It must be explored 
whether and to what extent it is possible to use 
models trained on the generic database in a real 
liner data environment (or how these models could 
be transferred to the real liner environment). 

Following the framework of the presented data-
driven methodology, sections 3 and 4 outline in de-
tail the real liner and the generic data generation 
pathways as well as the related modeling tasks in 
the knowledge discovery stage, evaluating their po-
tential for application. 

3 REAL LINER DATABASE 
GENERATION AND MODELING 

To directly evaluate the potential of simple optical 
devices and deep learning as an alternative to the 
current destructive reference method, the same in-
cylinder surface areas were measured following 
both approaches. The previously cut liners were 
also measured using the simple alternative ap-
proach. To ensure the comparability of the meas-
ured surface sections, specially tailored mechani-
cal equipment was employed for supporting data 
acquisition at the exact same measurement loca-
tions with both approaches, cf. Figure 6. 

 

Figure 6: Cylinder liner segment support device for 
sophisticated stationary reference microscope 
measurements (left) and liner segment holder for 
simple handheld microscope measurements 
(right). 

Two segments were cut out of each liner being 
measured: one containing the area near top dead 
center (TDC) parallel to the piston pin axis (where 
the highest surface wear is expected) and one con-
taining the area near bottom dead center (BDC) 
perpendicular to the piston pin axis (where no sur-
face wear is expected since the piston does not 
come into contact with the running surface there). 
Surface wear at the area near top dead center can 
be evaluated by comparing its surface topography 
with that of the reference area near bottom dead 
center. To enhance the probability of observing var-
iations in surface topography changes, liners with 
varying operating hours were considered, ranging 
from 2,550 h to 30,000 h. More than 100 liners from 
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Type 6 gas engines manufactured by INNIO Jen-
bacher GmbH & Co. OG were obtained and meas-
ured using both approaches, thereby providing a 
comprehensive representation of the spectrum of 
surface topographies associated with different 
stages of cylinder liner wear. 

In each measurement area, up to 15 distinct meas-
urement positions representing non-overlapping 
sections were optically measured with both the high 
accuracy stationary reference device [29] and the 
handheld microscope [30]. While the confocal mi-
croscope is capable of acquiring both depth images 
and RGB reflection images of the same surface 
section, the handheld device is limited to capturing 
RGB images of a larger surface section. To com-
pensate for the differing image sections, resolu-
tions, and minor tolerances of the measurement 
equipment (relevant for the handheld measure-
ments in particular), a postprocessing step was car-
ried out in which the images from both approaches 
were registered algorithmically (i.e., pixel-wise 
alignment using a mutual information criterion). Fig-
ure 7 illustrates this data generation process for the 
real liner approach. Throughout the creation of the 
database over the course of a multi-year research 
project, the process underwent continuous en-
hancement and slight adaptations. 

For example, explorative data analysis and initial 
results showed that there was only a small gain in 
information from very high-resolution depth images 
compared to those with slightly lower resolution 
(4407 × 4395 pixels vs. 1104 × 1101 pixels). 
Therefore, the resolution of the depth images from 
the reference method was reduced in order to min-
imize measurement effort and increase storage ef-
ficiency. In addition, the exposure settings for the 
RGB images obtained with the handheld micro-
scope were gradually optimized. A total of 2,850 
image pairs were obtained with the final setting 
(which also includes remeasurement of previously 
measured liners). They represent the final basis for 
all data-driven modeling approaches. While prior 
results may have been derived from older database 
versions, the validity of the conclusions remains un-
affected. 

The stated problem of replacing the demanding 
surface evaluation process with the reference 
method by using simpler optical methods was han-
dled primarily by means of deep learning. Within 
the field of deep learning, there are a variety of ap-
proaches that differ significantly in their architecture 
and their manner of tackling a problem. All levels of 
surface information (i.e., depth/RGB image, MRC, 
or surface texture parameters) could serve as tar-
gets for deep learning approaches. 

 

Figure 7: Comparison of data generation with refer-
ence device (depth and RGB image) and handheld 
microscope (RGB image only). 

There are two main types of machine learning: Su-
pervised learning relies on known target data and 
unsupervised learning does not rely on this type of 
information [31]. With a generative adversarial 
framework [32], there is also the additional option 
of learning the generation of a target and critiquing 
whether it is realistic. To process image inputs such 
as the surface RGBs, a convolutional neural net-
work (CNN) is commonly used, which extracts the 
relevant information from the image based on the 
inherent grid structure of the pixels. For CNNs as 
well, a wide variety of network architectures exist 
depending on the specific purpose, e.g., the so-
called U-Net for image segmentation. Generative 
adversarial networks (GANs) are a widely used and 
effective method for image-to-image translation. 

Given all these options, several modeling ap-
proaches have been investigated. Table 1 summa-
rizes some of the studies already conducted. All ba-
sically demonstrate that the approach that simpli-
fies the condition detection of cylinder liners is tech-
nically feasible.
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Table 1: Summary of the most significant implemented approaches and studies 

Study Input(s) & Target(s)1 Approach 

[17] RGB_HR → Depth  
Depth → RGB_HR 

RGB to depth reconstruction (and vice versa) using supervised 
CNN (U-Net) with physics-based reconstruction term  

[18] RGB_LR → Depth GAN (U-Net generative function, DCGAN adversarial function) 
with uncertainty-aware loss 

[19] RGB_LR → MRC Two-stage MRC prediction via explicit surface texture parame-
ter prediction (both CNN-based, supervised) 

[20] RGB_LR ⇌ Depth Cycle-consistent GAN for RGB to depth translation and vice 
versa with perceptual reconstruction loss 

1“RGB_HR” and “RGB_LR” refer to the high- and low-resolved RGB images, respectively, “Depth” to the depth images, and MRC to 
the material ratio curves derived from the depth images. 

 

Figure 8: RGB input image, predicted depth image 
and measured depth image at two example posi-
tions on the cylinder liner running surface. 

Considering that the depth bandwidth of the liner 
surface is about 10 μm, fairly accurate results have 
been achieved: a mean absolute error of 0.465 μm 
for the depth image and 0.102 μm for the MRC pre-
diction, both evaluated on unseen data not used 
during training [4]. Figure 8 illustrates example re-
sults from BDC and TDC positions of the cylinder 
liner running surface (unworn/worn areas) in which 
the depth images have been predicted from low-re-
solved RGB images. The measured depth images 

serve as a ground truth reference for comparison. 
In addition to depth image prediction, an uncer-
tainty quantification approach elaborated in [18] al-
lows detection of quality deficiencies in the input 
images, thereby strengthening the reliability of the 
results. 

Although the potential of simple optical devices and 
deep learning for cylinder liner surface assessment 
has been extensively studied and the feasibility of 
this approach has been successfully demonstrated, 
data generation to further develop the approach re-
mains challenging. For deep learning (and ML in 
general), however, the opportunity exists to use dif-
ferent but similar data to train and improve the mod-
els. In addition to the real liner approach, a related 
generic database generation and modeling ap-
proach was therefore developed as outlined in sec-
tion 2; it is further elaborated in Section 4. 

4 GENERIC DATABASE GENERATION 
AND MODELING 

Two criteria must be met to generate a 
comprehensive generic database of RGB and 
depth images similar to real liner optical data in a 
convenient, fast and generally efficient manner: On 
the one hand, the approach must be able to swiftly 
and flexibly generate artificial groove and plateau 
structures (mimicking the liner running surface) by 
hand. On the other hand, these structures must be 
created at a larger spatial scale than that of real 
liners so that standard stereo vision depth cameras 
may be used. The ENGinnSAND database was 
created to meet both of these criteria. It is available 
publicly and free of charge on the internet at 
https://lec.at/go/ENGinnSAND. 
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The key idea behind ENGinnSAND is to generate 
groove and plateau surface structures with easily 
shapeable sand—as in a Japanese dry garden. 
Figure 9 shows the specially tailored experimental 
setup that includes a sandbox, illumination devices, 
and a stereo vision camera. With internal dimen-
sions of approximately 70 × 42 cm, the sandbox is 
easily handled by human operators and the gener-
ated surface topographies can be accurately meas-
ured with standard stereo vision cameras. The pre-
sent study employed an Intel RealSense D415 
camera [33] capable of recording both depth and 
RGB images of the same scene. Two separate light 
sources allow the evaluation of different types of il-
lumination. In ENGinnSAND, groove and plateau 
structures in the sand were shaped manually by a 
human operator with several specific V-shaped 
tools. Other tools may be used to create more 
structures and shapes. In addition to the variety of 
shape options, the type and size of the sand may 
be varied. In this way, the generic approach is ap-
plicable not only to liner surfaces, but also to a wide 
range of different yet similar depth surface predic-
tion problems. 

 

Figure 9: Experimental “sandbox” setup used to 
generate a generic image database with groove 
and plateau structures. 

The final ENGinSAND database consists of a total 
of 5,000 recorded scene pairs of RGB images and 
corresponding depth images (distances of 480 mm 
to 530 mm measured, resolution of 720 × 1280 pix-
els for both image types, cf. selected square image 
sections in Figure 10). Similar to the real liner ap-
proach, this data can be used for modeling with 
computer vision methods. For example, [34] stud-
ies a so-called hybrid Radon transform network for 
depth image prediction, where usage of both image 
and Radon space (i.e., transformation via the Ra-
don transform function) has been demonstrated to 

be beneficial compared to separate CNNs (U-Net). 
Figure 11 shows example results for three selected 
groove and plateau structures in which the depth 
images have been predicted from low-resolved 
RGB images. The measured depth images serve 
as a ground truth for comparison. 

 

Figure 10: Comparison of ENGinnSAND RGB and 
depth image sections and real liner approach im-
age sections of handheld RGB and reference depth 
image. 

 

Figure 11: RGB input image, predicted depth image 
and measured depth image for three example 
groove and plateau structures. 
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For the depth ranges modeled in the sand, which 
have a bandwidth of approximately 25 mm, again 
fairly accurate results have been achieved with un-
seen validation data [34]: a root mean squared er-
ror of 0.79 mm for the depth image prediction and 
mean absolute error of 0.25 mm for the MRC pre-
diction. These errors have the same order of mag-
nitude as the errors of the real liner approach 
(0.465 µm and 0.102 µm, respectively, at 10 µm 
depth range, cf. Section 3). Thus, the results ob-
tained motivate using the surrogate surface images 
of the ENGinnSAND dataset to train and correlate 
the real linear RGB reflection and depth images. 

Current research focuses on using the data-driven 
model from the generic approach to predict real 
liner depth images (i.e., using real liner RGB sur-
face images as model input), which poses some 
additional challenges. While the different target 
depth ranges can be easily aligned via linear 
rescaling (normalization), a preprocessing step to 
align the input images with the color or grayscale 
histograms is essential to producing valuable 
model output. Yet given the optical comparison in 
Figure 10, the comparable magnitude to the results 
obtained, and the capabilities of ML-based com-
puter vision approaches in general, a considerable 
information gain is expected from the generic ap-
proach with regard to previously developed or even 
entirely new deep learning approaches. Once the 
real liner and generic pathways are merged, rela-
tively little effort would be needed to extend the ge-
neric database, permitting an investigation of the 
potential to further increase prediction accuracy. 

5 FIELD APPLICATION POTENTIAL 

Promising results have been achieved with the real 
liner approach for simplified surface structure char-
acterization. With the generic approach, there is 
great potential to further enhance prediction accu-
racy due to the comparatively low effort required for 
training database extension. However, several ad-
ditional technical challenges need to be addressed 
before the measurement procedure for real cylinder 
liners can be advanced towards a low-cost image 
acquisition device for use on production engines in 
the field. 

Particularly challenging for on-site application are 
the cleaning of the liner surface (i.e., the removal of 
oil deposits), the establishment of defined exposure 
conditions, and the fixing of the position of the opti-
cal device with respect to the investigated surface 
area. During the investigations performed so far un-
der laboratory conditions these challenges have 
not been of major concern. Although a detailed dis-
cussion of technical solutions to address these is-
sues is beyond the scope of this study, they are 
considered to be technically feasible. 

While the handheld microscope used in this study 
fits into the bore of the INNIO Jenbacher Type 6 
engine (bore diameter 190 mm), the cylinder head 
still needs to be removed to investigate an area of 
interest in the combustion chamber. Optical data 
obtained from the fully assembled engine, e.g., with 
an endoscope through a bore in the cylinder head, 
would require less effort for engine disassembly but 
likely pose additional challenges such as lower 
achievable RGB image quality and thus lower qual-
ity of surface topography characterization. In addi-
tion, the previously mentioned challenges of sur-
face cleaning, exposure definition, and measure-
ment position fixation would be made more difficult, 
if not impossible, to overcome. 

The primary benefit of implementing the real liner 
approach lies in its scalability, a feature that is par-
ticularly advantageous for entire engine fleet appli-
cations. While there are microscopic solutions for 
highly sophisticated surface measurement—at 
least for automotive applications—that could poten-
tially be utilized on-site, these methods are often 
accompanied by substantial costs for the required 
measurement devices, akin to the microscope em-
ployed in the reference method (e.g., factor 20–100 
compared to the handheld microscope employed 
for the real liner approach). Thus, such devices are 
unlikely to be employed extensively in large num-
bers in the field. 

A well-established, fleet-wide, low-cost solution for 
quantitative cylinder liner wear assessment can fa-
cilitate a distinct shift from predetermined mainte-
nance (combined, to some extent, with qualitative 
CBM) to a proper quantitative CBM approach, 
thereby lowering the risk of unnecessary, costly 
premature component replacement based on max-
imum operating hours (while the cylinder liner might 
not have reached its end of service life) as well as 
false positive qualitative wear detections by service 
technicians. In addition, comprehensive field appli-
cation of a quantitative cylinder liner wear evalua-
tion process can generate the knowledge needed 
to understand liner running surface wear formation 
and evolution in detail and to model these pro-
cesses, e.g., as a function of key engine operating 
parameters. Such models could subsequently be 
employed in predictive maintenance approaches, 
potentially reducing costs further by exploiting the 
majority of the useful life of the liner and scheduling 
maintenance based on the actual need. Note that 
the full potential of predictive maintenance is only 
likely to be developed if the engine (with all its rele-
vant components) is considered as a whole. 
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6 SUMMARY AND OUTLOOK 

This study has focused on evaluating the potential 
of a simple surface topography characterization 
method based on computer vision for quantitative 
cylinder liner running surface wear assessment. 
The investigations involving the presented data-
driven methodology indicate that predicting the sur-
face topography (or derived information) from RGB 
surface images using data-driven models is techni-
cally feasible with an accuracy sufficient for liner 
running surface condition detection. Two ap-
proaches for database generation have been fol-
lowed: 

• A real liner approach, in which a real liner im-
age database is obtained with sophisticated 
reference and simple handheld microscopes 
capable of recording depth and RGB images, 
respectively. This approach has the advantage 
that it collects real problem data but requires 
considerable effort for database generation 
and thus has restrictions in the amount of data 
available for model training. 

• A generic approach, in which a generic image 
database is obtained with a sandbox and a ste-
reo vision camera capable of recording both 
depth and RGB images. This approach re-
quires relatively little effort for database gener-
ation so that a comparatively large image data-
base could be generated. On the downside, the 
images appear similar to the real problem but 
are not identical. 

Both databases served to train data-driven models, 
relying on deep learning approaches from com-
puter vision. It was found that the errors for depth 
image and MRC prediction have the same order of 
magnitude. Current research focuses on using the 
data-driven model from the generic approach to 
predict real liner depth images (i.e., using real liner 
RGB surface images as model input). While this 
poses additional challenges due to the differences 
in image color/greyscale histograms, a considera-
ble information gain from the generic approach and 
thus an increase in prediction accuracy are ex-
pected with previously developed or even entirely 
new deep learning approaches. 

Field application of the investigated approach to 
quantitative cylinder liner wear assessment is con-
sidered technically feasible but requires the over-
coming of specific challenges beyond the scope of 
this study such as cylinder liner cleanliness as well 
as defined exposure conditions and positioning of 
the optical device in relation to the investigated sur-
face area. A well-established, fleet-wide, low-cost 
solution for quantitative cylinder liner wear assess-
ment can facilitate a quantitative CBM approach, 
thereby lowering the risk of unnecessary and costly 

premature component replacement. In addition, 
data from the field can serve to generate the 
knowledge needed to further understand liner wear 
formation and evolution in detail and to model these 
processes, e.g., as a function of key engine oper-
ating parameters. Such models could subsequently 
be employed in predictive maintenance ap-
proaches, potentially reducing costs and engine 
downtime. 

7 DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

BDC: Bottom dead center 
CBM: Condition-based maintenance 
CM: Condition monitoring 
CNN: Convolutional neural network 
DoE: Design of experiments 
GAN: Generative adversarial network 
ICE: Internal combustion engine 
LEC: Large Engines Competence Center 
ML: Machine learning 
MRC: Material ratio curve 
Sk: Surface core height 
SMr1: Surface peak material ratio 
SMr2: Surface valley material ratio 
Spk: Surface reduced peak height 
Svk: Surface reduced valley height 
TDC: Top dead center 
Vmp: Peak material volume 
Vvv: Valley void volume 
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