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ABSTRACT

The cylinder pressure signal is one of the key indicators for evaluating the working process of an
engine. Addressing the challenges faced in acquiring cylinder pressure signals due to the cost and
inconvenience of installing cylinder pressure sensors for small or medium engines, an indirect
measurement method of fusion easily measurable crankshaft torsional vibration and cylinder head
vibration signals to identify cylinder pressure is proposed. After operating data were collected under
different conditions through an engine test bench, the excitation and response characteristics of the
crankshaft and connecting rod mechanism were analyzed combining these data with a multi-body
dynamics model of the engine, and deep feature parameters of the crankshaft torsional vibration and
cylinder head vibration signals were extracted. By integrating the physical information of the
transmission characteristics of crankshaft torsional vibration and cylinder head vibration, and using
machine learning algorithms, the cylinder pressure signal was identified. The identification accuracy
under both normal and faulty engine states shows it can provide an effective reference for monitoring
engine operating conditions.
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1 INTRODUCTION 

Direct measurement of cylinder pressure has many 
limitations in practical engineering applications. On 
the one hand, high-precision pressure sensors are 
expensive, especially when fully deployed in multi-
cylinder engines, which significantly increases the 
overall cost; on the other hand, the installation of 
the sensors requires modification of the cylinder 
head, which will increase the design and 
manufacturing cost of the engine. In addition, the 
high temperatures and pressures inside the 
cylinders place severe demands on the durability of 
the sensors[1][2][3]. 

In response to the above problems, indirect 
measurement methods of cylinder pressure have 
gradually gained attention, i.e., identifying or 
reconstructing the pressure in the cylinder by 
acquiring signals that are easy to measure and 
have a low measurement cost. At present, scholars 
at home and abroad have proposed a variety of 
indirect measurement methods, mainly physical 
model method, signal analysis method, data-driven 
method and so on[4][5][6]. For example, based on 
the theoretical relationship between vibration 
velocity and cylinder pressure, Juan T et al.[7] 
derived the vibration characteristic parameter 
expression describing the peak pressure in the 
cylinder and verified the feasibility of the method. 
Huimin Z et al.[8] used VMD for noise reduction of 
vibration signals, trained 1D-CNN model to identify 
the cylinder pressure based on the noise reduced 
signals and cylinder pressure signals, and 
comparatively analysed the influence of the 
vibration signal measurement point location on the 
identification accuracy. Kim. G et al.[9] measured 
the vibration and in-cylinder pressure signals on a 
natural gas/diesel dual-fuel engine, constructed a 
deep neural network model for cylinder pressure 
reconstruction, and analysed in detail the influence 
of the main parameters on the prediction accuracy. 
Valencia-Duque A F et al.[10] proposed a time-
delay neural networks (TDNN), which produced a 
stable cylinder pressure prediction performance by 
adjusting the delay of the TDNN based on the 
crankshaft speed in 12 engine operating states. 

At present, there are some methods to indirectly 
measure the cylinder pressure of the engine, 
however, most of the existing methods are based 
on a single signal. Indirect measurement of cylinder 
pressure through a single signal has certain 
limitations, on the one hand, the engine in the 
actual operation of the working conditions are 
complex and variable, based on a single signal 
indirect measurement method is usually difficult to 
adapt to the diversity and variability of the working 
conditions. On the other hand, the single-signal 
method is more sensitive to abnormal signals, in 
practice, due to noise, transient interference and so 

on will cause signal anomalies, the single signal is 
easily affected by it, resulting in a large error in the 
measurement results[11][12]. Multi-signal fusion 
can effectively make up for the limitations of single-
signal methods, improve the stability and accuracy 
of recognition through the comprehensive use of 
multi-source information, and has a strong fault 
tolerance. In recent years, multi-signal fusion 
technology has shown its excellent advantages in 
many fields such as fault diagnosis and pattern 
recognition. For example, Zejun Zheng et al.[13] 
constructed a fusion demodulation method that 
fuses the characteristic spectra of multi-channel 
signals and highlights the fault characteristic 
frequency, reflecting the superiority compared with 
other methods. Yan GH et al.[14] fused three-
phase current and vibration signals using uses a 
three-column parallel CNN, then extracted features 
and identified faults according to BiLSTM, and the 
test results showed that the method was 4.2% 
more accurate than ordinary methods. Gai XY et 
al.[15] used Random Forest algorithm and KPCA 
algorithm to screen and reduce the dimensional 
fusion of multiple signal singularity features to 
establish the mapping relationship between the 
fused features and the degree of tool wear, which 
is used to identify the tool wear state, and the 
results show that the method can efficiently and 
accurately identify the wear state of the tool 
compared with some other methods. These studies 
have shown that multi-signal fusion techniques can 
make full use of the complementarity between 
different signals and exhibit high robustness and 
adaptability under complex working conditions. 
Based on this, this paper proposes a multi-signal 
fusion method for cylinder pressure identification, 
which fuses the signals of cylinder head vibration, 
crankshaft torsional vibration, and thermal 
parameters, and has a strong fault-tolerance 
capability while ensuring the accuracy of cylinder 
pressure identification. 

The rest of the paper is as follows: section 2 
describes the data acquisition and feature 
extraction, section 3 identifies the cylinder 
pressure, section 4 presents the results and 
discussion, and section 5 concludes the study. 

2 DATA ACQUISITION AND FEATURE 
EXTRACTION 

2.1 Data acquisition 

The test object for CA4DLD type four-stroke diesel 
engine, doing work in the order of 1-3-4-2. A 
vibration sensors is installed on the 1st cylinder 
head to collect the cylinder head vibration signals 
during normal combustion of the diesel engine. 
Install a cylinder pressure sensor by drilling a hole 
in the cylinder head of the 1st cylinder to collect the 
pressure signal in the 1st cylinder. Install a 
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magnetoelectric sensor on the flywheel side to 
collect the torsional vibration signal of the 
crankshaft. Drill holes in the lubricating oil channel 
to install temperature sensors and pressure 
sensors to collect the lubricating oil temperature 
and pressure signals. A temperature sensor is 
punched and installed on the intake and exhaust 
manifolds to collect the intake and exhaust 
temperature signals. Other sensors are installed in 
a similar manner as above, with specific installation 
locations shown in Figure 1. The data acquisition 

platform uses NI CompactDAQ-9189, equipped 
with NI9231 vibration acquisition card to realise the 
dynamic acquisition of vibration signals, and 
NI9223 voltage acquisition card to realise the 
dynamic acquisition of cylinder pressure and top 
stop signals; The vibration sensor adopts BK4534B 
type sensor, the cylinder pressure sensor adopts 
Kistler 6052C31 type sensor; the upper stop sensor 
adopts SZB-16L type Hall sensor, and the 
temperature sensor adopts PT100 K type sensor. 

 

Figure 1. Schematic diagram of the test system 

The engine was warmed up before data collection, 
and the data were collected after stabilisation. 
When the engine is running at 1200 r/min, the load 
is gradually increased in the order of 100N·m, 
200N·m, 300N·m, 400N·m, 500N·m, 600N·m and 
640N·m, and the signals of top dead center, 
cylinder head vibration, cylinder pressure and 
thermal parameters are collected simultaneously. 

2.2 Feature extraction  

In order to facilitate the systematic analysis and 
processing of the signals in each working cycle, the 
collected signals such as cylinder pressure and 
cylinder head vibration are intercepted for the 
whole cycle. Specifically, taking the piston 
movement to the compression top dead center 
position as the reference point, the crankshaft 
rotates one week between two adjacent 
compression top dead center, and a complete 
working cycle is carried out between three 
consecutive compression top dead center. 
According to this principle, the cylinder pressure, 
cylinder head vibration and other signals are 
intercepted for the whole cycle. 

Calculate the distribution characteristics of the 
intercepted signal in the time domain, frequency 
domain and time-frequency domain, and obtain a 
series of key features that can reflect the operating 

state of the engine, which can effectively simplify 
the complexity of the signal data, and at the same 
time highlight and retain the most representative 
information in the signal. For the cylinder head 
vibration signal, 17 features were extracted in the 
time domain, including amplitude factor, root mean 
square and impact factor, etc.; and 4 features were 
extracted in the frequency domain, including centre 
of gravity frequency, mean square frequency band, 
etc. To further improve the feature discrimination 
accuracy, the extracted features are screened. 
According to the distinguishing ability of the 
features under different working conditions, the 
features with lower distinguishing degree are 
eliminated and the features with higher 
distinguishing degree are retained. After screening, 
13 cylinder head vibration signal features with high 
discriminability are retained. The torsional vibration 
signals are processed in the same way as the 
thermal parameters. 

3 CYLINDER PRESSURE 
IDENTIFICATION 

3.1 Neural network mathematical model 

In this study, Back Propagation Neural Network 
(BPNN) is used, BPNN has three main layers: input 
layer, hidden layer and output layer, the input layer 
is responsible for receiving the sample data, the 
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hidden layer is responsible for weighted summation 
of the sample data and nonlinear processing 
through the activation function, and the output layer 
is responsible for outputting the final result. BPNN 
contains three main steps in training: forward 
propagation, back propagation and iterative 
training[16][17]. 

Forward propagation means that the input layer 
receives the sample data and passes it to the 
hidden layer, where the neurons in the hidden layer 
perform a weighted summation of the sample data 
and output it after a nonlinear transformation 
through an activation function. The formula for the 
neuron is[18]: 
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The first order Taylor expansion is a local linear 
approximation to the multivariate function 
f(x1,x2...,xn) at (a1,a2...,an). From equations (1)~ (3), 
the work process of neuron can be equated to the 
local linear approximation of the multivariate 
function f(x1,x2...,xn) at (a1,a2...,an). 

 

Figure 2. Schematic diagram of three-layer neural 
network structure 

As shown in Figure 2, the corresponding equations 
in the three-layer neural network are: 
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In the forward propagation process, the initial 
values of ω and b (ω(0), b(0)) are first randomly 
selected, then the sample data are passed to each 
layer of the network for computation and generating 
the results, and finally the error values are 
computed by comparing the computed results with 
the actual values. 

Backpropagation is based on the error value of 
each layer, using the gradient descent algorithm to 
solve for the local minima of the loss function, and 
constantly updating the weights and biases 
between neurons to achieve the minimum error 
between the output cylinder pressure curve and the 
measured cylinder pressure curve, i.e. 

( ) ( ) ( )
2

,
: ,

x Y
Minimize E b E Y y  = −

     (6) 

E(x,Y) is the mathematical expectation of the 
traversed training samples, Y is the measured 
value and y is the neural network model output 
value. 

The gradient descent algorithm used in BPNN is 
Levenberg-Marquardt (L-M) algorithm, which is a 
small batch gradient descent algorithm, i.e., the 
entire sample set is divided into batches, and the 
first batch of samples is forward propagated during 
training to calculate its average error. Then forward 
propagate the samples of the second batch, 
calculate its average error, and so on until all the 
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samples of the batch have been processed by the 
network, and output the average error value of the 
current round. 

The objective function is assumed to be a one-
dimensional function f(x), as shown in Figure 3: 

 

Figure 3. Objective function f(x) 

Calculate the gradient at position x0 and move one 
small step in the direction of the negative value of 
the gradient to get x1, i.e. 
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According to Taylor's formula: 
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ɑ is the learning rate. It can be seen that f(x1) < f(x0), 
and the iterations are carried out sequentially until 
the point where the local minima of the objective 
function f ’(xn) = 0 is found. 

The update equations for ω and b are: 
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The Taylor expansion of E(ω,b) is: 
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Substituting equation (9) into (10) and simplifying 
gives: 
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If ∂E/∂ω, ∂E/∂b are not all zero on (ω(n),b(n)), then 
there must be E(ω(n+1),b(n+1)) < E(ω(n),b(n)). 

The partial derivatives that need to be solved in the 
process of solving for the extremes of the objective 
function by the gradient descent method are, 
respectively: 
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From equation (6), we can see that 
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Using the known partial derivatives to solve for the 
unknown partial derivatives according to the chain 
derivation rule, we get 
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The updating of ω and b can be done by 
substituting it into the updating equation for ω and 
b. 

Iterative training is the process of continuously 
performing forward and back propagation to update 
ω and b until the error is minimized. 

3.2 Training results 

Sample sets at 1200r/min, 100N·m, 200N·m, 
300N·m, 400N·m, 500N·m, 600N·m and 640N·m 
under seven operating conditions were formed 
through feature extraction and screening, with 30 
samples under each operating condition, each of 
which includes: 13 cylinder head vibration signal 
combustion segment features, 11 torsional 
vibration signal features, 16 thermal parameters, 
while a total of 200 points in the cylinder pressure 
signal combustion section (300°CA~420°CA) are 
extracted as labels corresponding to each sample. 
The size of the feature matrix is 210×40 and the 
size of the cylinder pressure matrix is 210×200. 
80% of them were used as training dataset for 
neural network model training and 20% as 
validation dataset to verify the performance of the 
network model. 

The parameters of BPNN are set as follows: the 
number of network layers is 3, the number of 
neurons in the hidden layer is 10, the learning rate 
is 0.001, the activation function is tanh(x), the 
training algorithm is L-M, and the convergence 
criterion is the early stopping method. 

 

Figure 4. Regression plot of BPNN model 

The regression plot shown in Figure 4 
demonstrates the linear relationship between the 
output values of the network model and the true 
values and the effect of the fit, reflecting the 
identification accuracy of the model. The diagonal 
line is the fitted line in the ideal state, indicating the 
case where the output value of the network model 
is exactly equal to the true value. As shown in 
Figure 6, the data points are centrally distributed 
near the diagonal line, indicating that the error 
between the model output value and the true value 
is small. The correlation coefficient R is 0.99, 
indicating a strong linear relationship between the 
output values and the true values, and the model 
has a high recognition accuracy. 

4 RESULTS AND DISCUSSION 

4.1 Identification results  

In order to evaluate the accuracy of the multi-signal 
fusion-trained neural network model in recognising 
cylinder pressure, the peak pressure and its 
location are used as evaluation indexes. The peak 
value is an important parameter to measure the 
recognition result in terms of amplitude accuracy; 
the peak pressure location is the crank angle when 
the peak pressure appears, which is used to 
assess the recognition accuracy of the recognition 
result in terms of timing. These two indicators can 
comprehensively reflect the amplitude and phase 
errors in cylinder pressure recognition, thus 
providing a quantitative basis for evaluating the 
recognition effect of the neural network model. The 
recognition results of the network model trained by 
multi-signal fusion are shown in Figure 5. 
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Figure 5. Comparison of relative error between 
identified cylinder pressure and measured cylinder 
pressure 

As can be seen from Figure 5, the BPNN model 
shows high accuracy in identifying the cylinder 
pressure under different operating conditions, with 
the maximum value of the average relative error 
being 3.22% and the minimum value being 0.01%. 
It is worth noting that the network model used is not 
an independent model trained separately for each 
operating condition, but a single network model 
trained based on the fusion of signal data from 
multiple operating conditions. The model is able to 
output stable and accurate cylinder pressure 
curves even when the operating conditions change, 
which indicates that the network model with 
multiple signal fusion has strong cross-condition 
adaptability and generalisation ability, and avoids 
the need to train the model individually for each 
condition, which improves the training efficiency 
and practicability of the model. 

4.2 Fault-tolerant performance analysis of 
multi-signal fusion 

In practical application environments, a single 
sensor may fail or be affected by external 
interference, resulting in signal loss or distortion, 
thus limiting the accuracy of cylinder pressure 
recognition. Through the multi-signal fusion 
strategy, even if one sensor fails or the signal is 
invalid, the cylinder pressure recognition can still be 
maintained with high accuracy by the data 
information provided by other sensors, which 
enhances the robustness and reliability of the 
model under the fault state. Therefore, the fault-
tolerance performance of the multi-signal fusion 
strategy is further analysed to verify the recognition 
accuracy and stability of the model under a sensor 
failure scenario. 

There is an important correlation between exhaust 
temperature and cylinder pressure. During engine 
operation, the cylinder pressure, as a key 
characterisation of the combustion process, directly 

reflects the combustion state of the gas mixture in 
the cylinder and its thermodynamic properties. The 
fluctuation of exhaust gas temperature is usually 
caused by the changes of heat release and energy 
conversion efficiency during the combustion 
process, therefore, the exhaust gas temperature is 
usually regarded as an indirect characterisation of 
the cylinder pressure change. Based on this, the 
failure of the exhaust gas temperature sensor is 
analysed as an example to verify the fault-tolerance 
performance of the multi-signal fusion strategy. 

Common manifestations of exhaust temperature 
sensor failure include the following three situations: 
first, the collected signal value is significantly lower 
than the normal state value, second, the collected 
signal value is significantly higher than the normal 
state value, and third, there are abnormal 
fluctuations in a certain period of time. This is due 
to the sensor in the acquisition of the signal process 
due to the sensing element damage, performance 
decline or external interference caused by the 
output temperature value deviation from the normal 
range, as shown in Figure 6. 

 

Figure 6. Comparison of relative error between 
identified cylinder pressure and measured cylinder 
pressure 

The samples in the faulty state are input into the 
model trained using the data in the normal state, 
the corresponding cylinder pressure signals are 
identified, and the average relative error between 
the pressure maximum and the location of the 
pressure maximum is used as the evaluation index 
of the model performance, and the results are 
shown in Figure 7. 
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(a) 

 

(b) 

 

(c) 

Figure 7. Comparison of the relative error between 
the recognised cylinder pressure and the measured 
cylinder pressure: (a) Fault type 1: Exhaust gas 
temperature sensor signal value is lower than the 

normal state. (b) Fault type 2: Exhaust gas 
temperature sensor signal value is higher than 
normal. (c) Fault type 3: The exhaust temperature 
sensor signal value fluctuates abnormally during a 
certain period of time. 

As can be seen in Figure 7, the neural network 
model with multi-source information fusion shows 
excellent fault tolerance performance in cylinder 
pressure recognition under three different fault 
types. Under the three fault types of low, high and 
abnormal fluctuations of the sensor acquisition 
signal, the model is still able to control the average 
relative error of the maximum value of the cylinder 
pressure and its location within 5%, which indicates 
that the model has a strong anti-interference ability 
to a sensor abnormality. The multi-source 
information fusion strategy compensates for the 
lack of fault signals with data from other sensors, 
so that the recognition accuracy is still maintained 
under individual sensor fault conditions. This fault 
tolerance not only enhances the robustness of the 
model, but also improves its reliability in complex 
application environments and ensures the stability 
of cylinder pressure recognition under multiple load 
and sensor fault conditions. 

5 CONCLUSIONS 

The multi-source information fusion strategy has 
high cylinder pressure recognition accuracy and 
stability. By fusing multiple signals such as cylinder 
head vibration, crankshaft torsion vibration, and 
thermal parameters, it can capture the running 
state of the engine more comprehensively and 
accurately, so as to ensure the recognition 
accuracy of the cylinder pressure, in which the 
average relative error of the peak pressure and the 
average relative error of the location of the peak 
pressure are 1.39% and 0.44%, respectively. 

The method of multi-source information fusion has 
good fault tolerance. When individual sensors fail, 
a high recognition accuracy can still be ensured. 
Specifically, when different types of faults occur in 
individual sensors, the average relative errors of 
the identified pressure maxima and the location of 
the pressure maxima are less than 5%, which 
demonstrates the good accuracy and reliability of 
the method in practical applications, lays a 
technical foundation for the development of an 
engine health monitoring system under complex 
operating conditions, and makes it possible to 
sense the engine state based on multi-source 
information fusion. The scope of future work 
applies the method to the intelligent operation and 
maintenance of engines. 

6 DEFINITIONS ACRONYMS, ABBREVIA 
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TIONS 

VMD The variational mode decomposition 

CNN The convolutional neural network 

BiLSTM Bi-directional long short-term memory 

KPCA Kernel principal component analysis 

TDNN The time-delay neural network 

BPNN The back propagation network 

Xi The  input of the ith neuron in the input 
layer 

ωi The weights between neurons 

b The bias between neurons 

φ The nonlinear activation function 

E The mathematical expectation 

Y The measured value 

y The neural network model output 
value 
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