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ABSTRACT

The rapid and accurate analysis of flow characteristics on rough surfaces is crucial for the lubrication
design of friction pairs such as engine piston rings and bearings. Current lubrication analysis for rough
surfaces predominantly uses finite difference method (FDM) or finite element method (FEM) to solve
the average Reynolds equation. These methods require finely discretized computational grids for real
rough surfaces and necessitate calculations across different film thicknesses to obtain flow factors
within the average Reynolds equation. This results in large-scale computations that are time-
consuming, significantly hindering the efficiency of lubrication analysis for real rough surfaces.

In recent years, physics-informed neural networks (PINNs) have developed rapidly and have been
applied to the analysis of hydrodynamic lubrication on smooth surfaces. However, due to the inherent
spectral bias problem of PINNs, they cannot be effectively applied to the lubrication analysis of rough
surfaces with high-frequency characteristics. To address this limitation, this paper proposes a multi-
scale lubrication network architecture suitable for the analysis of rough surface lubrication. This
approach introduces a Fourier feature network with learnable frequency parameters to adaptively learn
the frequency characteristics of rough surfaces and applies it to the calculation of flow factors. This
method enables real-time calculation of flow factors. Even when considering the time required for
network training, the computation time is significantly reduced, effectively doubling the efficiency
compared with traditional methods.

This innovative approach offers a promising solution for the lubrication analysis of real rough surfaces,
essential for optimizing the performance and longevity of engine components. It paves the way for
more accurate and faster design processes in the lubrication of friction pairs, enhancing the overall
efficiency of engine lubrication design.
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1 INTRODUCTION 

Modern engine components are increasingly 
subjected to harsh conditions, including thinner 
lubricating films, higher temperatures, and reduced 
lubricant availability. As a result, the impact of 
surface topography on lubricated contacts, 
especially in components like bearings and piston 
rings, has become more significant[1]. The growing 
recognition of surface roughness has led to efforts 
aimed at designing optimized surface textures to 
improve the tribological performance of these 
components. However, simulating rough surfaces 
presents a challenge due to the large difference in 
scale between global contact dimensions and local 
surface features. To address this, numerical 
methods typically employ either deterministic or 
stochastic approaches [2].Deterministic methods 
refine the computational mesh to capture surface 
features at the microscale, directly incorporating 
roughness into the film thickness equation. While 
accurate, this approach becomes high 
computational cost for real rough surfaces due to 
the fine meshes required. Stochastic methods, 
such as the flow factor technique [3] and 
homogenization methods [4], offer more efficient 
solutions but sacrifice detailed local flow 
information. 

To mitigate the computational challenges of 
multiscale problems, machine learning, particularly 
Physics-Informed Neural Networks (PINNs), has 
emerged as a promising alternative [5]. PINNs 
integrate physical laws directly into the network 
architecture, enabling the solution of partial 
differential equations (PDEs) while incorporating 
boundary and initial conditions into the loss 
function. Pioneering work by Raissi [6] 
demonstrated the power of PINNs in solving PDEs 
efficiently, leading to applications in lubrication 
problems. Subsequent studies [7-11] expanded the 
use of PINNs to solve Reynolds equations, 
predicting oil film pressure distributions and 
performing sensitivity analyses. However, most of 
these studies focused on smooth surfaces, ignoring 
the effects of roughness, which are critical for 
realistic lubrication analysis. 

A major limitation of PINNs is the "spectral bias," 
which causes the network to favor low-frequency 
solutions, making it difficult to model high-
frequency features such as those found in rough 
surfaces [12]. Researchers have explored 
strategies like input encoding in higher-dimensional 

feature spaces to improve the network’s ability to 

capture multiscale features. Wang ’ s work on 

multiscale Fourier feature networks showed 
promise in solving specific PDEs, but these 
methods rely on fixed-frequency embeddings [13], 

limiting their flexibility in handling rough surface 
lubrication problems. 

This paper introduces a novel deep learning 
framework to address these challenges. The 
method incorporates trainable frequency 
parameters in Fourier feature embeddings, 
enabling the network to dynamically adjust and 
select appropriate frequencies. This approach 
enhances the flexibility of the model, allowing it to 
effectively solve lubrication problems involving 
surface roughness. The proposed method is 
validated by comparing it with traditional FEM 
approaches, showing high consistency and 
significantly reduced computation times. This 
innovation not only addresses the spectral bias 
issue but also offers a more efficient solution for 
lubrication analysis in engineering applications. 

2 HYDRODYNAMIC LUBRICATION 

The Reynolds equation is commonly used to 

analyze textured or rough surfaces in 

hydrodynamic lubrication. This study employs the 

Multiscale lubrication Neural Network (MLNN) 

method, using a slider bearing as a case study to 

illustrate the hydrodynamic lubrication analysis of 

rough surfaces, as shown in Figure 1.  

 

Figure 1  Slider bearing. 

In a two-dimensional steady-state, the Reynolds 

equation for  a slider bearing is expressed as:  

3 3 6 ,
p p h

h h u
x x y y x


      

+ =  
       

 (1) 

Here, h and p represent the local film thickness 

and pressure, respectively. The Cartesian 

coordinates x and y are aligned parallel and normal 

to the direction of sliding, respectively. The variable 

u denotes the relative sliding velocity between the 

contact surfaces, and η  represents the viscosity of 

the lubricant. 

In this study, the lubricant film thickness is 

considered to comprise multiscale components. 

The first component, denoted as ℎp(x,y), represents 
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the macroscale geometric profile of the bearing, 

typically ranging from 10 to 100 μm. The second 

component, ℎr(x,y), accounts for the microscale 

surface roughness including the texture of the 

bearing, generally in the range of 0.1 to 10 μm. 

Therefore, the total film thickness at any point (x, y) 

in the lubrication domain is expressed as: 

( ) ( ) ( ), , , ,p rh x y h x y h x y= +               (2) 

Upon determining the pressure distribution using 

a specific numerical method, integrating this 

pressure over the entire lubrication domain allows 

for the calculation of the load-bearing capacity, 

denoted by Wh. 

,hW pdA


=       

      (3) 

The equations were transformed using 

dimensionless parameters: 
2

0

0

, , , ,
phx y h

X Y H P
L B h uL

= = = =        (4) 

The slider, with a length  L and a width B, has its 

upper and lower surfaces moving along the X-axis 

at a relative velocity U. The dimensionless film 

thickness is given by  

( ) ( )
0

, 1 1 ( , ),r

L
H X Y X H X Y

h


= + − +        (5) 

where α represents the inclination angle of the 

slider, and h0 is the nominal oil film thickness at the 

outlet. The hydrodynamic lubrication is modeled by 

the Reynolds equation. The oil film pressure 

distribution is derived by solving this equation. The 

dimensionless form of the Reynolds equation is  
2

3 3

2
6 ,

P L P H
H H

X X Y Y XB

       
+ =   

       
  (6) 

A Dirichlet boundary condition , where P=0,  is 
applied to the boundaries of the slider. 

3 MULTISCALE LUBRICATION NEURAL 
NETWORKS (MLNN) 

3.1 MLNN architectures 

The structure of a Multiscale lubrication Neural 
Network (MLNN) for solving the Reynolds equation 
with rough surface, as described by equation (6), is 
depicted in Fig. 2. The neural network's role is to 
approximate the solutions P of equation (6). Thus, 
P  is the outputs of the neural network, while the 
coordinates X, Y and H serve as its inputs. 

 

Figure 2  MLNN structure 

Unlike standard physics-informed neural 

networks (PINNs), the proposed network 

architecture constructs a Fourier features network 

using a random features mapping as a coordinate 

embedding of the inputs, followed by a 

conventional PINN. The proposed Fourier features 

embedding can be viewed as a layer with trainable 

parameters that can be incorporated into any PINN 

architecture. Compared to the Fourier features 

network proposed by Wang et al., which uses user-

specified frequencies (problem dependent and held 

fixed during model training), this approach allows 

for encoding inputs across various frequencies, 

enhancing the neural network's ability to learn and 

represent a broader spectrum of functions 

effectively. Once embedded, the inputs are further 

processed through a structure consisting of fully 

connected neural layers. 
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Mathematically, the transformation of input 

coordinates into Fourier feature mappings is 

defined as follows: 

( )

( ) ( ) ( ) ( )

, ,

2 ; 2 ; 2 ; 2 ; ,

i

i i i i

X Y H

sin f X cos f X sin f Y cos f Y H



   

=

 
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    (7) 

For i=1, 2, … M, where f i represents the 

frequency parameters, each sampled from a 

Gaussian distribution, N(0, σi), with mean 0 and 

standard deviation σi. This encoding strategy 

significantly enhances the network's capacity to 

discern and model spatial hierarchies and patterns. 

The subsequent processing layers are described 

as: 

( )( )1 1 1, , , 1,2 ,i iNN w X Y H b for i M = + =    (8) 

( )1 , 1,2 ; 2 ,i i

l l l lNN w NN b for i M l L −= + =  =      (9) 

( ), ,, , , , i

net LP X Y H w b f NN=                      (10) 

Here φi and σ represent the Fourier feature 
mappings and activation functions, respectively. 
The architecture employs weights w and biases b 
similar to those in a conventional fully connected 
neural network, with the addition of a trainable 
Fourier feature input encoding layer. 

 When training the neural network, the objective is 
to minimize the training error regarding prescribed 
boundary conditions as well as the PDE residual, 
Loss=Lossbc+ LossR. 

𝐿𝑜𝑠𝑠𝑏𝑐 =
1

𝑁𝐵𝐶
∑ (𝑃 − 𝑃𝑏𝑐)

2𝑁𝐵𝐶
𝑖=1 (11)

Where Pbc is the pressure boundary, which is zero 
in this study, NBC is the training data obtained 
through the boundary conditions, and Eq.11 
ensures that the pressure boundary conditions are 
satisfied, representing the traditional "soft 
constraint" form of imposing boundary conditions. 
Since the boundary conditions for this paper were 
applied as a "hard constraint" and the loss of 
boundary conditions was not used for training the 
network. 

𝐿𝑜𝑠𝑠𝑅 =
1
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∑𝑅2
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(13) 

In the formula, NC represents the training point of 
the equation. By using automatic differentiation 

technology, the equation residual value R can be 
efficiently obtained. 

3.2 Training of the MLNN 

For networks with Fourier features, the frequency 
parameters were sampled from a Gaussian 
distribution N(0, σi), where 𝜎𝑖 determines the 
frequency preference of the network's learning 
process. Consequently, if a network uses only one 
Fourier feature embedding, the convergence of the 
frequency components will be slower for all but the 
preferred frequency determined by the chosen 𝜎𝑖. 
Therefore, it is advisable to embed the inputs using 
multiple Fourier feature mappings with different 𝜎𝑖 
values to ensure that all frequency components are 
learned at the same rate of convergence. In this 
study, 𝜎𝑖 values were selected as 1, 20, and 50, and 
30 frequency parameters were initialized from N(0, 
σi)for each value.  

These mappings were then combined into a five-
layer fully connected neural network, with each 
layer containing 100 neurons. Sigmoid activation 
functions were utilized within the network layers. 
The weights and biases of the neural network were 
initialized using the Glorot normal scheme. The 
parameters were then optimized using the ADAM 
optimization algorithm with an initial learning rate of 
0.01 and a decay rate of 0.005 in MATLAB. 
Training was conducted for 1000 epochs, with a 
batch size of 1000. During each epoch, 1000 
datasets were propagated through the neural 
network until all datasets had been processed, 
updating the network parameters accordingly. 
Thus, one epoch of training is equivalent to one 
iteration of the optimization algorithm. 60 
collocation points were set up in both x and y 
directions within the computational domain, such 
that Nc = 3600. 

Table 1 Setup of the MLNN and algorithm 
parameters 

Items  value 

Fourier feature embedding size 30 

Hidden layers 5 

Hidden layers neurons 100 

Training epochs 10000 

Mini batch size 1000 

Initial learn rate 0.01 

Decay rate 0.005 

4 RESULTS  

4.1 Analysis on a Randomly Textured 
Surface 

For this analysis, a random surface was selected to 
represent the stochastic nature of surface 
roughness. The predictive performance of the 
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MLNN was benchmarked through a comparative 
evaluation against results obtained using FEM. The 
rough surface depicted in Figure 3 was generated 
using the fast Fourier transform method, with a 
surface roughness Ra of 0.3 μm and an 
autocorrelation length of 0.03 mm. 

 

Figure 3  Rough surface for training 

The pressure distributions obtained from both the 
FEM and the MLNN are displayed in Figure 4. The 
comparison reveals a close agreement between 
the methods, suggesting the neural network's 
adeptness in capturing the intricacies of the 
random roughness. 

 

(a) FEM 

 

(b) MLNN 

Figure 4  Pressure distributions with FEM and 
MLNN methods 

In Figure 5 (a), the absolute error distribution 
between the FEM and MLNN is depicted, showing 
moderate discrepancies across the domain. Figure 
5 (b) demonstrates the pressure distribution at a 
specific cross-section (Y = 0.5), where the curves 
from both methodologies closely align, validating 
the accuracy of the MLNN. 

 

(a) absolute error 
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(b) pressure distribution at Y=0.5 

Figure 5  Comparison of the value with FEM and 
MLNN methods 

Table 2 provides a concise summary of the 

simulation outcomes, presenting the maximum 

pressure and load-carrying capacity assessed by 

both the FEM and MLNN. The disparity in 

maximum pressure values is nearly negligible, with 

MLNN results showing only a 0.33% deviation 

compared to FEM. Similarly, the load-carrying 

capacity exhibits consistency between the two 

methods, with an error of 0.3%. 

Table 2 Comparison between FEM and MLNN 

 FEM MLNN errors 

Max. pressure 0.1505 0.15 0.33% 

Load carrying 
capacity 

0.0653 0.0651 0.3% 

The examples above demonstrate that MLNN can 
effectively solve multiscale lubrication problems for 
randomly rough surfaces. 

5 APPLICATION DISCUSSION 

The MLNN is applicable for addressing lubrication 

issues related to specific surface topologies. 

Depending on factors such as the number of 

epochs, collocation points, hidden layers, and 

neurons per layer, training the network can take 

several hours. However, once trained, the problem 

can be resolved in seconds. One advantage of 

MLNN is its ability to solve multiple problems 

simultaneously. It can be reused for different 

surface topology inputs, requiring only a brief 

neural network evaluation that takes less than a 

second. This is especially advantageous in 

scenarios where the Reynolds equation must be 

repeatedly solved due to varying film thickness, 

such as in the computation of flow factors for rough 

surfaces in Figure 6. In such cases, the MLNN is 

notably more efficient than a conventional solver. 

Additionally, MLNNs are well-suited for extensive 

parameter studies, such as optimizing the texturing 

of bearing surfaces to reduce friction. This type of 

study involves a large number of parameters, as 

the texture's shape, length, width, height, 

arrangement, and distribution may all vary. 

Conducting such a parameter study with a 

traditional solver would be prohibitively expensive. 

 

Figure 6  flow factors for rough surface 

6 CONCLUSIONS 

In this work, MLNN is used for the first time to solve 

the Reynolds equation for rough surfaces exhibiting 

complex multi-scale features. By integrating 

trainable Fourier feature embeddings into the 

traditional PINN architecture, this study effectively 

addressed the spectral bias that has hindered the 

thorough analysis of high-frequency surface 

characteristics in lubrication studies. The 

introduction of a multiscale lubrication neural 

network framework utilizing trainable Fourier 

features demonstrated enhanced adaptability to 

varying surface roughness conditions without 

requiring prior knowledge of the frequency 

distribution of the solution. This approach exhibited 

notable precision and efficiency in lubrication 

simulations, as confirmed through comparative 

assessments with finite element methods.  
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