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ABSTRACT

Methanol engine represent a crucial direction in internal combustion engine research, with their
performance optimization garnering significant attention. The engine itself is a highly coupled, multi-
parameter, nonlinear system with interdependent objectives, rendering traditional single-variable or
single-objective optimization methods inadequate for meeting its design and optimization
requirements. To this end, this paper focuses on a specific methanol engine, utilizing polynomial
model, artificial neural network (ANN) model, and GT-Power model, each combined with the NSGA-II
algorithm. These methods are employed to optimize and comparatively analyze its operating
parameters.
Based on bench tests, the one-dimensional model is calibrated, and the effects of intake timing,
ignition timing, and air-fuel ratio (AFR) on engine performance are analyzed to determine the
optimization range. With torque and BSFC as optimization objectives, and maximum cylinder
pressure, peak pressure rise rate, and exhaust temperature as constraints, three multi-objective
optimization methods based on different models are employed to optimize operating parameters such
as intake timing, ignition timing, and AFR. The results indicate that the three methods yield varying
degrees of optimization effects, with torque increases of 2.39%, 2.22%, and 2.24%, respectively, and
average reductions in BSFC of 8.34%, 10.11%, and 10.05%. From the perspectives of optimization
effectiveness, efficiency, and applicability, the method based on polynomial model is simple and
reliable with relatively high optimization efficiency, though the modeling accuracy is moderate. The
method based on the GT-Power model achieves excellent optimization results but incurs high trial and
error costs and is approximately 50% less efficient than the other two methods. The method based on
the ANN model combines the advantages of good optimization results and high efficiency, with broad
applicability, albeit requiring relatively high modeling standards.

Powered by TCPDF (www.tcpdf.org)



 

CIMAC Congress 2025, Zürich                Paper No. 054             Page 3 

 

1 INTRODUCTION 

Methanol, with its wide range of sources, can be 
extracted or synthesized from various substances 
such as coal or natural gas, or produced using 
clean energy through water electrolysis to generate 
hydrogen combined with CO2 [1]. It is easy to store 
and transport, cost-effective, and characterized by 
a low boiling point and rapid evaporation, which 
facilitates the formation of mixed gases [2]. With 
high oxygen content and fast combustion speed, it 
supports complete combustion, exhibits excellent 
lean burn properties, and generates fewer harmful 
emissions, making it a representative "clean 
alternative fuel" with promising market potential [3]. 
Developing methanol engines not only reduces the 
reliance on fossil fuels but also contributes to 
alleviating environmental pollution [4]. Engine 
performance has consistently been a key focus in 
its development [5]. Optimizing the performance of 
methanol engines can fully unlock their potential 
and lay a solid foundation for broader promotion 
and application [6]. 

Multivariable and multi-objective optimization 
methods allow simultaneous optimization of 
multiple parameters and objectives, yielding a 
series of trade-off solutions that satisfy the given 
constraints. These methods are particularly well-
suited for solving nonlinear system optimization 
problems like those found in engines, which involve 
multiple variables and interdependent couplings 
[7]. With the continuous advancement of new 
algorithms, such as genetic algorithms, 
evolutionary strategies, and evolutionary 
programming, researchers have begun 
incorporating multi-objective optimization 
algorithms into engine optimization and design. 
Consequently, several model-based multi-
objective optimization methods for engines have 
been proposed, which can be categorized into 
response surface model-based and simulation 
model-based approaches [8]. 

The response surface model approximates a 
complex simulation model with a simpler functional 
relationship [8]. Two primary methods for multi-
objective optimization based on response surface 
models are polynomial-based models and neural 
network-based models. For example, Wu [9] and 
Liu [10] utilized second-order response surface 
fitting and global optimization algorithms to perform 
bi-objective optimization on engine power and 
emissions, as well as torque and fuel consumption 
rates. Jaliliantabar [10] developed mathematical 
models linking engine emissions and performance 
characteristics to factors such as load, speed, EGR 
rates, and biodiesel fuel rates, optimizing these 
factors using the NSGA-II algorithm. Etghani [12] 
used an ANN model to identify optimal biodiesel 

blends and speed ranges through multi-objective 
optimization techniques. Similarly, Kakaee [13] 
utilized a Multi-Layer Perceptron (MLP) network for 
neural network modeling and combined it with 
evolutionary algorithms to determine the best 
engine parameters. This response surface model-
based approach to multi-objective optimization 
offers advantages such as high computational 
speed and efficiency. However, the optimization 
effect is greatly affected by the accuracy of the 
model. 

Simulation models are mathematical 
representations based on computational formulas 
derived from fluid dynamics, thermodynamics, and 
other physical principles, offering clearer physical 
insights compared to response surface models. For 
instance, Chen [14] integrated the non-dominated 
sorting genetic algorithm, KIVA-3V, and a master-
slave parallel algorithm to optimize injection 
parameters for improved PCCI combustion, 
ultimately reducing NOx emissions by 17.34% and 
soot emissions by 58.23%. Senecal and Reitz [15] 
utilized the newly developed KIVA-GA global 
optimization framework to optimize six engine 
parameters, significantly reducing soot and NOx 
emissions while improving fuel consumption. 
Although simulation models are slower in 
computation compared to response surface 
models, they offer higher accuracy and clearer 
physical interpretations. Consequently, simulation 
model-based multi-objective optimization methods 
excel in optimization precision and reliability. 

Existing research has developed various model-
based multi-objective optimization methods for 
engines, yet no systematic studies have been 
conducted to comprehensively elucidate their 
respective strengths and weaknesses—an 
essential step for the advancement and application 
of engine multi-objective optimization techniques. 
Thus, a comparative study of these methods is 
warranted. This paper takes a 1.3T methanol 
engine as the research object, with the optimization 
objectives of maximizing torque and minimizing 
brake specific fuel consumption (BSFC). The 
optimization variables include intake timing, ignition 
timing, and air-fuel ratio (AFR). Using the NSGA-II 
algorithm, the engine is optimized through three 
different models: polynomial models, neural 
network models, and the GT-Power model. Finally, 
a comprehensive comparison of these three model-
based multi-objective optimization methods is 
conducted to analyze their respective advantages 
and disadvantages. The findings of this study lay a 
foundation for further research on multi-objective 
optimization methods and provide theoretical 
guidance for their practical application. 
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2 ENGINE MODELING AND SIMULATION 

2.1 Computational model 

This study focuses on a 1.3T methanol engine, for 
which a numerical model is established using GT-
Power software. The basic engine parameters are 
shown in Table 1. 

Table 1. Specifications of the engine. 

Parameter Value 

Type In-line, four-stroke 

Intake system 
Turbocharged 

Inter-cooling 

Cylinder number 4 

Injection mode Multi point injection 

Bore×Stroke 75×73.5mm 

Displacement 1.3L 

Compression ratio 9.5 

Number of valves per cylinder 4 

Max torque/Speed 195N·m@1600-4000r/min 

Rated power/Speed 100kW / 5500r/min 

The 1-D GT-Power simulation model, as shown in 
Figure 1, primarily includes the intake and exhaust 
systems, turbocharging system, and the cylinder. 
The main equations used in the modeling process 
are listed in Table 2. 

To ensure that the established engine simulation 
model accurately predicts engine performance, it is 
calibrated using data collected from bench tests, 
including cylinder pressure, torque, and BSFC. 
Calibration is performed for wide-open throttle 
conditions at engine speeds of 1000 r/min, 1200 
r/min, 1600 r/min, 2000 r/min, 2400 r/min, 2800 
r/min, 3200 r/min, 3600 r/min, 4000 r/min, 4400 
r/min, 4800 r/min, 5200 r/min, and 5500 r/min. 
Figure 2 compares the simulated and experimental 
cylinder pressure curves under operating 
conditions at 5500 r/min, while Figure 3 compares 
the simulated and experimental values of torque 
and BSFC. The results indicate that the maximum 
error between the simulated and experimental 
values does not exceed 5%. Therefore, the 
simulation model is deemed capable of accurately 
predicting engine performance. 

Table 2. Major equations and models. 

Item Content 

Basic control equation 

Mass conservation equation 

Momentum conservation 
equation 

Energy conservation 
equation 

Heat transfer model Woschni heat transfer model 

Combustion model 

Spark-Ignition Turbulent 
Flame Combustion Model

（SITurb） 

 

Figure 1. GT-Power model. 

 

Figure 2. Experimental and simulated in-cylinder 
pressure (5500rpm). 

 

Figure 3. Experimental and simulated external 
characteristics. 

2.2 Simulation results 

Intake timing, ignition timing, and AFR are critical 
parameters that directly determine engine 
performance [16-18]. Therefore, this section 
conducts a simulation study to examine the effects 
of intake timing, ignition timing, and AFR on the 
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performance of a methanol engine, providing a 
basis for selecting appropriate optimization ranges. 

Under various speed conditions, with the throttle 
fully open and other operating parameters held 
constant, only the intake timing is varied to 
investigate its effects on torque and BSFC. 
Simulation results for three representative 
operating conditions—1000 r/min (low speed), 
3200 r/min (maximum torque speed), and 5500 
r/min (rated speed)—are presented in Figure 4. 

 

Figure 4(a). Effect of intake timing on engine 
performance (Torque). 

 

Figure 4(b). Effect of intake timing on engine 
performance (BSFC). 

Under various speed conditions, with the throttle 
fully open and other operating parameters held 
constant, only the ignition advance angle 
(referenced to the compression TDC) is varied to 
study its effects on engine torque and BSFC. 
Simulation results for three representative 
conditions—1000 r/min (low speed), 3200 r/min 
(maximum torque speed), and 5500 r/min (rated 
speed)—are presented in Figure 5. Similarly, the 
simulation results of the effect of AFR on engine 
performance are shown in Figure 6. 

 

Figure 5(a). Effect of ignition advance angle on 
engine performance (Torque). 

 

Figure 5(b). Effect of ignition advance angle on 
engine performance (BSFC). 

 

Figure 6(a). Effect of AFR on engine performance 
(Torque). 

Taking into account both power and efficiency, 
uniform-length optimization ranges for the intake 
advance angle, ignition advance angle, and AFR 
were selected under full-load conditions at various 
engine speeds. These optimization ranges provide 
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a foundation for subsequent multi-objective engine 
optimization, as summarized in Table 3. 

 

Figure 6(b). Effect of AFR on engine performance 
(BSFC). 

Table 3. Optimization ranges. 

Speed (r/min) 
Intake 
advance 
angle (°CA) 

Ignition 
advance 
angle (°CA) 

AFR 

1000 10~30 -7~13 5~8 

1200 4~24 -6~14 5~8 

1600 0~20 -6~14 5~8 

2000 -2~18 -4~16 5~8 

2400 1~21 -2~18 5~8 

2800 -2~18 -1~19 5~8 

3200 3~23 0~20 5~8 

3600 -4~16 1~21 5~8 

4000 -5~15 4~24 5~8 

4400 -8~12 4~24 5~8 

4800 -10~10 5~25 5~8 

5200 -10~10 6~26 5~8 

5500 -10~10 5~25 5~8 

3 POLYNOMIAL MODEL COMBINED 
WITH NSGA-II 

3.1 Experimental design 

In this study, the DoE (Design of Experiment) 
optimization toolbox in GT-Power software is 
utilized for experimental design. Among the 
methods available, Latin Hypercube Sampling 
(LHS) is selected due to its ability to achieve 
comprehensive coverage with minimal experiment, 
even without an in-depth understanding of the 
system. 

To build a high-accuracy model with as few 
experimental samples as possible, an analysis is 
conducted under the condition of a fully open 
throttle at a speed of 2800 r/min. This analysis 
explores the impact of sample size on model quality 

and provides a basis for determining the optimal 
number of samples. 

Research suggests that the relationship between 
engine performance indicators and adjustment 
parameters is typically quadratic or cubic [19]. 
Therefore, a second-order polynomial is initially 
chosen to establish response models for methanol 
engine parameters including torque, BSFC, peak 
cylinder pressure, peak pressure rise rate, and 
exhaust temperature. Figure 7 illustrates how the 
quality of these models evolves as the sample size 
increases from 35 to 1200. 

 

Figure 7(a). Fitting accuracy with sample size. 

 

Figure 7(b). Predictive precision with sample size. 

As shown in Figure 7, when the sample size 
reaches 600, the model’s fitting accuracy and 
predictive precision stabilize significantly, with 
minimal improvement observed as the sample size 
increases further. To account for variations across 
operating conditions and ensure adequate 
robustness, 800 samples are selected for each 
speed condition to fit the polynomial engine model. 

The experimental design includes three variables: 
intake advance angle, ignition advance angle, and 
AFR. Their ranges are detailed in Table 3. The 
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sample points are generated using the LHS 
algorithm in the DoE toolbox, with the number of 
variables M=3 and the number of sample points N 
= 800 for model fitting and N = 200 for validating 
the model's predictive capability. Figures 8 and 9 
illustrate the distribution of the fitting and testing 
sample points, respectively, under the 2800 r/min 
condition. The sample points are evenly and 
reasonably distributed across the experimental 
space, ensuring comprehensive coverage and 
reliable model development. 

 

Figure 8. Distribution of fitting sample point. 

 

Figure 9. Distribution of testing sample point. 

3.2 Construction of polynomial model 

When constructing the polynomial model for the 
engine, it is necessary to determine the polynomial 
order in advance. The choice of order is typically 
based on the relationship between engine 
parameters and performance indicators. To 
establish a high-precision polynomial model, the 
quality of the model is analyzed as a function of 
polynomial order, using the 2800 r/min condition as 
an example. This analysis provides a reference for 
selecting the appropriate polynomial order. Table 4 
presents the adjR2, root mean square error 
(RMSE), and r values of polynomial models with 
varying orders under the 2800 r/min condition. 

As shown in Table 4, with an increase in polynomial 
order, the adjR2 and r values steadily rise, while the 
RMSE values decrease, indicating continuous 

improvements in model fitting and predictive 
accuracy. When a fourth-order polynomial model is 
employed, all adjR2 values exceed 0.99, RMSE 
values fall below 4.2, and r values surpass 0.995, 
demonstrating high model quality. Therefore, a 
fourth-order polynomial is selected to construct the 
approximate model for the methanol engine. The 
mathematical form of the model is expressed as 
Equation (1): 

y = β0 + β1·(InA) + β2·(SA) + β3·(AFR) + 
β4·(InA)·(SA) + β5·(InA)·(AFR) + β6·(SA)·(AFR) + 
β7·(InA)2 + β8·(SA)2 + β9·(AFR)2 + β10·(InA)3 + 
β11·(SA)3 + β12·(AFR)3 + β13·(InA)4 + β14·(SA)4 + 
β15·(AFR)4               (1) 

Here, y represents the response value, β denotes 
the polynomial regression coefficients, InA is the 
intake advance angle, SA is the ignition advance 
angle, and AFR is the air-fuel ratio. 

Table 4.  Comparison of the quality of polynomial 
models of different orders at 2800 r/min. 

Index Response 
Order 

Second Third Fourth 

adjR2 

Torque 0.9906 0.9949 0.9971 

BSFC 0.9913 0.9951 0.9970 

Peak cylinder 

pressure 
0.9983 0.9995 0.9996 

Peak pressure 

rise rate 
0.9974 0.9996 0.9997 

Exhaust 

temperature 
0.9582 0.9635 0.9912 

RMSE 

Torque 1.2264 0.9055 0.6782 

BSFC 4.0514 3.0433 2.3788 

Peak cylinder 

pressure 
0.7388 0.3866 0.3626 

Peak pressure 

rise rate 
0.0943 0.0367 0.0333 

Exhaust 

temperature 
9.1115 8.5030 4.1560 

r 

Torque 0.9958 0.9974 0.9986 

BSFC 0.9953 0.9969 0.9983 

Peak cylinder 

pressure 
0.9993 0.9998 0.9998 

Peak pressure 

rise rate 
0.9987 0.9998 0.9998 

Exhaust 

temperature 
0.9800 0.9827 0.9957 

Figure 10 presents the adjR2, RMSE, and r values 
for five different response models across various 
engine speed conditions. As shown, all adjR2 
values exceed 0.98, r values are greater than 0.99, 
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and are very close to 1, while RMSE values remain 
below 6. These results indicate that the polynomial 
models exhibit high fitting accuracy and predictive 
precision.  

 

Figure 10(a). adjR2 of each polynomial model under 
different working conditions. 

 

Figure 10(b). RMSE of each polynomial model 
under different working conditions. 

 

Figure 10(c). r of each polynomial model under 
different working conditions. 

3.3 Optimization results and analysis 

Based on the polynomial model constructed in the 
previous section, the NSGA-II algorithm is 
employed here for multi-objective optimization of 
the engine. The optimization aims to maximize 
torque and minimize BSFC, while incorporating 
nonlinear constraints such as peak cylinder 
pressure, maximum pressure rise rate, and 
exhaust temperature. The mathematical 
representation of the optimization model can be 
described as: 

Optimization target: 

Max Torque(InA, SA, AFR)  (2) 

Min BSFC(InA, SA, AFR)  (3) 

Nonlinear constraints: 

PMax (InA, SA, AFR) ≤ 90   (4) 

PrMax (InA, SA, AFR) ≤ 4   (5) 

Tem (InA, SA, AFR) ≤ 1150  (6) 

Here, Torque and BSFC represent torque and 
brake specific fuel consumption, respectively, 
serving as the objective functions for the genetic 
algorithm. PMax denotes the peak cylinder pressure, 
with a constraint limit of 90 bar [20]. PrMax 
represents the maximum cylinder pressure rise 
rate, which for spark-ignition engines typically falls 
within the range of 0.20–0.40 MPa/°CA [21]. 
Hence, a limit of 4 bar/°CA is applied. Tem 
corresponds to the exhaust temperature, 
expressed in K. 

When using the NSGA-II algorithm for optimization, 
it is generally necessary to handle optimization 
problems with nonlinear constraints through a 
constraint-handling technique. Here, the static 
penalty function method is employed to construct 
the fitness function, as it is simpler and offers better 
robustness [22]. 

To normalize the nonlinear constraints (4) ~ (6), the 
following steps can be applied: 

g1(x) = Pmax(x) / 90 - 1 ≤ 0  (7) 

g2(x) = Prmax(x) / 4 - 1 ≤ 0  (8) 

g3(x) = Tem(x) / 1150 - 1 ≤ 0  (9) 

Among them, x is the optimization variable vector, 
x=x(InA, SA, AFR). 
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The fitness function constructed using the static 
penalty function method can be written as follows: 

F1(x) = Torque(x) – R1∑ max[g
i
(x),0]3

i=1  (10) 

F2(x) = BSFC(x) + R2∑ max[g
i
(x),0]3

i=1  (11) 

The penalty factors for the torque and BSFC 
objective functions are denoted as R1 and R2, 
respectively. Here, R2 is defined as k times R1, 
where k is a factor determined by the ratio of the 
average BSFC to the average torque in the initial 
population. After repeated attempts, the 
parameters for the NSGA-II algorithm were set as 
follows: population size = 100, number of 
generations = 100, and penalty factor R1 = 80. After 
the optimization process, the pareto optimal set for 
the two objectives was obtained. The Pareto front 
is shown in Figure 11. 

 

Figure 11(a). Pareto optimal front for each speed 
condition (1000rpm). 

 

Figure 11(b). Pareto optimal front for each speed 
condition (1200rpm-5500rpm). 

From the pareto optimal front in the figure, it can be 
observed that there is a trade-off between torque 
and BSFC. Based on the characteristics of the 

trade-off between the objectives, the pareto front 
can be divided into three segments, as illustrated 
for the 1000 rpm operating condition in Figure 
11(a). Segment I is characterized by a slight 
increase in BSFC, which leads to a significant 
improvement in torque. Segment III is 
characterized by a small increase in torque, which 
results in a sharp rise in BSFC. Segment II is 
relatively balanced, where significant increases in 
torque also lead to a noticeable increase in fuel 
consumption. This segment includes three key 
points: Point A, located at the endpoint, represents 
a solution optimized for low fuel consumption. Point 
C, located at the other endpoint, represents a 
solution optimized for high torque. Point B, situated 
in the middle, represents a balanced solution with 
moderate torque and fuel consumption. 

To balance the engine's performance and fuel 
economy, the first step is to select a feasible 
solution from the II segment of the Pareto front, 
ensuring that its torque and BSFC are not worse 
than the original values. After selecting this feasible 
solution, the optimized parameter vector is re-
entered into GT-Power for simulation, yielding the 
optimization results. A comparison is made 
between the original values of engine torque and 
BSFC, the optimized response prediction values, 
and the optimized re-simulation values. The results 
are shown in Figure 12. From this, it can be 
observed that after optimization, the engine torque 
is significantly improved at low-speed operating 
conditions, although the overall increase is modest, 
with an average improvement of 2.39%. On the 
other hand, the BSFC decreases substantially 
across most operating conditions, with an average 
reduction of 8.34%. Additionally, the response 
prediction values for torque and BSFC after 
optimization are very close to the re-simulation 
values, indicating that the optimization accuracy 
based on the polynomial model is quite high. 

 

Figure 12(a). Comparison of optimization values 
with original values (Torque). 
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Figure 12(b). Comparison of optimization values 
with original values (BSFC). 

4 ANN MODEL COMBINED WITH NSGA-II 

4.1 Construction of ANN model 

To ensure consistency in testing methods, this 
section aligns with the previous content by 
employing LHS experimental design to select 800 
training samples and 200 testing samples for each 
working condition. The experimental samples are 
generated using the LHS algorithm from MATLAB's 
Statistics Toolbox. By calling the X=lhsdesign(n,p) 
function, an n*p matrix X is returned, where n is the 
number of samples and p is the number of 
variables. Here, n and p in the training sample are 
800 and 3 respectively, while n and p in the testing 
sample are 200 and 3 respectively. 

Theoretically, a network with a threshold, at least 
one S-shaped hidden layer, and a linear output 
layer can approximate any rational function. 
Generally, increasing the number of hidden layers 
or nodes within a hidden layer effectively enhances 
model accuracy but simultaneously complicates 
the network structure and prolongs training time. 
Therefore, two- and three-layer BP network models 
are proposed for engine modeling. The two-layer 
network is denoted as x-m-y, while the three-layer 
network is denoted as x-m-n-y, where x represents 
the number of input layer nodes, m and n represent 
the number of nodes in the first and second hidden 
layers, respectively, and y represents the output 
layer nodes. Taking the working condition at 2800 
r/min as an example, the variation in model fitting 
and prediction accuracy is observed by altering the 
number of nodes in the hidden layers of the two-
layer BP network. The training results, averaged 
over 10 repeated experiments, are presented in 
Figure 13. 

As shown in Figure 13, the ANN models for torque, 
peak cylinder pressure, and peak pressure rise rate 
exhibit high levels of fitting accuracy and prediction 
precision when using the 3-18-1 network structure. 

However, the models for BSFC and exhaust 
temperature perform significantly less effectively. 
To improve the quality of the ANN models for BSFC 
and exhaust temperature, a three-layer BP network 
structure is used. By varying the number of nodes 
in the two hidden layers, the changes in model 
quality are observed. The training results for BSFC 
are illustrated in Figure 14. It is evident that when 
the BSFC model adopt the 3-16-15-1 network 
structures, the fitting accuracy and prediction 
precision are significantly enhanced. Similarly, the 
exhaust temperature model uses a 3-16-19-1 
network structure. 

 

Figure 13(a). Fitting accuracy with the number of 
hidden layer nodes. 

 

Figure 13(b). Predictive precision with the number 
of hidden layer nodes. 

MATLAB's deep learning toolbox includes various 
training algorithms based on gradient or jacobian 
matrices. Using the torque ANN model as test 
case, 12 different algorithms were employed for 
training. The basic settings are summarized in 
Table 5. The training was repeated 10 times and 
the average value was taken. The results are 
shown in Table 6. 
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Figure 14(a). Fitting accuracy of BSFC model with 
the number of hidden layer nodes. 

 

Figure 14(b). Predictive precision of BSFC model 
with the number of hidden layer nodes. 

The training results in Table 6 indicate that the 
"trainlm" algorithm outperforms the others and is 
thus selected for training the BP network models. 

During the training and validation process, the 
maximum training generations, target mean 
squared error, and maximum consecutive 
validation failures are set to 1000, 0, and 6, 
respectively. Taking the exhaust temperature ANN 
model under the 2800 r/min working condition as 
an example, its training and validation process is 
illustrated in Figure 15. By the 90th training, the 
maximum allowable validation failures 6 is reached, 
satisfying the stopping criterion, and the training is 
terminated. The optimal validation result, obtained 
after the 84th training, is retained, with a MSE of 
1.4586 x 10-5. 

To evaluate the quality of the neural network 
models, the RMSE of the training set and the r of 
the testing set are selected as metrics to assess the 
fitting accuracy and prediction precision. Figure 16 
presents the RMSE and r values for the ANN 
models of torque, BSFC, peak cylinder pressure, 
peak pressure rise rate, and exhaust temperature 
across 13 different engine speeds. It can be 

observed that the RMSE values for all models are 
below 0.014, and the r values exceed 0.9996. This 
indicates that the developed ANN models exhibit 
excellent fitting accuracy and prediction precision, 
enabling highly accurate predictions of methanol 
engine performance. 

Table 5. Basic settings of BP network. 

Content Parameter 

Combination of transfer function logsig+purelin 

Target mean square error (MSE) 0 

Maximum number of training generations 10000 

Maximum number of consecutive 
verification failures 

20 

Training set ratio 0.9 

Validation set ratio 0.1 

Table 6. Training results of different training 
algorithms. 

Training 
algorithms 

Torque 

RMSE r training duration 

trainlm 0.00192 0.99998 2.3s 

trainbr 0.00284 0.99997 1.0s 

trainbfg 0.00712 0.99988 1.8s 

trainrp 0.01091 0.99966 1.3s  

trainscg 0.02372 0.99834 0.6s  

traincgb 0.01405 0.99938 1.2s  

traincgf 0.01581 0.99939 1.1s  

traincgp 0.02754 0.99824 0.8s 

trainoss 0.02289 0.9987 1.4s  

traingdx 0.05023 0.99338 2.2s  

traingdm 0.38315 0.55268 9.6s  

traingd 0.08965 0.9815 15.6s  

 

Figure 15. Training status of exhaust temperature 
ANN model under 2800r/min condition. 
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Figure 16(a). RMSE of the ANN models under 
different working conditions. 

 

Figure 16(b). r of the ANN models under different 
working conditions. 

4.2 Optimization results and analysis 

To achieve optimization of the engine using a 
combined BP neural network model and the NSGA-
II algorithm, an integrated optimization platform 
was developed. This platform incorporates neural 
network modeling, NSGA-II algorithm optimization, 
GT-Power simulation, and data transfer 
functionalities. The core components of the 
platform are implemented using MATLAB, which 
handles neural network modeling and NSGA-II 
optimization. GT-Power simulations are controlled 
through Simulink, and the data exchange between 
MATLAB and GT-Power is facilitated via the 
Simulink/GT-Power coupling interface. The 
optimization process based on this platform is 
illustrated in Figure 17. 

During the optimization process, the population 
size, number of iterations, and penalty factor of the 
NSGA-II algorithm are consistent with the settings 
in Chapter 3, set to 100, 100, and 80, respectively. 
Upon completion of the optimization, a feasible 
solution is selected from the pareto front for the two 
objectives under each operating condition. The 
selected solutions are recalculated using GT-

Power to obtain the final optimization results. 
Figure 18 compares the original values of engine 
torque and BSFC, the predicted optimized 
responses, and the recalculated values from the 
GT-Power simulations. 

 

Figure 17. Optimization process of combining ANN 
model with NSAG-II algorithm. 

 

Figure 18(a). Comparison of optimization results 
based on ANN model with original values (Torque). 

 

Figure 18(b). Comparison of optimization results 
based on ANN model with original values (BSFC). 

As shown in the figure, after optimization, the 
engine torque exhibits a noticeable improvement 
primarily under low-speed operating conditions, 
with an average increase of 2.22%. Meanwhile, the 
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BSFC significantly decreases across most 
operating conditions, with an average reduction of 
10.11%. The curves of the predicted optimized 
responses and the recalculated values from the 
GT-Power simulations for torque and BSFC are 
almost identical, demonstrating that the 
optimization accuracy based on the ANN model is 
exceptionally high. 

5 GT-POWER MODEL COMBINED WITH 
NSGA-II 

5.1 Construction of coupled model 

To achieve the combined optimization of the 
NSGA-II algorithm and the GT-Power model, 
MATLAB, its Simulink module, and GT-Power are 
integrated. MATLAB is used to implement the 
NSGA-II algorithm, Simulink facilitates data 
exchange, and GT-Power performs simulation 
calculations. Figure 19 illustrates the coupling-
based optimization platform that integrates the 
NSGA-II algorithm, Simulink, and the GT-Power 
model. 

 

Figure 19. MATLAB/Simulink/GT-Power coupling 
schematic. 

First, the population individuals generated by the 
NSGA-II algorithm are compiled into a time-
continuous step signal. This signal is then input into 
the GT-Power model for simulation via the 
Simulink/GT-Power coupling interface. 
Simultaneously, the simulation results are 
transmitted back to the MATLAB workspace in real-
time. Finally, the simulation result corresponding to 
the last time point of each step signal is used to 
calculate the fitness values of the individuals in the 
NSGA-II algorithm. 

5.2 Optimization results and analysis 

Using the optimization platform, calculations are 
performed with the objectives of maximizing torque 
and minimizing BSFC. At the same time, the InA, 
SA, and AFR are optimized. The resulting pareto 
optimal front for torque and BSFC is shown in 
Figure 20. 

 

Figure 20. Pareto front for torque and BSFC under 
different conditions. 

After optimization, a feasible solution is selected 
from the pareto front for the two objectives under 
each operating condition. Figure 21 compares the 
optimization results based on the GT-Power model 
with the original values. It can be seen that different 
speed ranges exhibit distinct optimization 
characteristics. In the low-speed range (1000 r/min 
to 2400 r/min), both engine torque and BSFC show 
significant improvements. In the mid-speed range 
(2400 r/min to 4000 r/min), engine torque remains 
largely unchanged, while the improvement in BSFC 
is relatively modest. In the high-speed range (4000 
r/min to 5500 r/min), engine torque shows a slight 
increase, and the reduction in BSFC is more 
pronounced. After optimizing, the engine torque 
significantly improves only under low-speed 
conditions, with an average increase of 2.24%. 
Meanwhile, the BSFC decreases substantially 
across most operating conditions, with an average 
reduction of 10.05%. This demonstrates that the 
optimization method directly coupling the NSGA-II 
algorithm with the GT-Power model achieves 
excellent results, significantly enhancing the 
engine's performance and fuel economy.  

 

Figure 21(a). Comparison of optimization results 
with original values (Torque). 



 

CIMAC Congress 2025, Zürich                Paper No. 054             Page 14 

 

 

Figure 21(b). Comparison of optimization results 
with original values (BSFC). 

6 COMPARATIVE DISCUSSION OF 
OPTIMIZATION METHODS 

(1) Optimization effects. 

The optimization results of the three methods are 
compared and the results are shown in Figure 22. 
From Figure 23, it can be observed that the torque 
differences obtained through the three optimization 
methods are minimal, with an average deviation of 
less than 0.2%. However, there is a significant 
disparity in the BSFC. The BSFC optimized using 
the ANN model and the GT-Power model shows an 
average difference of less than 0.1% and is 
approximately 2% lower, on average, compared to 
the BSFC optimized using the polynomial model. 
This indicates that the optimization effects of the 
ANN and GT-Power models are largely consistent 
and notably superior to those of the polynomial 
model. 

The GT-Power model can avoid the fitting errors 
caused by approximating the simulation model as 
a response model. Therefore, in theory, the 
optimization results based on the GT-Power model 
should outperform those based on the ANN model. 
However, the actual results do not align with this 
expectation. There are two main reasons for this 
discrepancy: first, the ANN model exhibits 
exceptionally high accuracy, almost comparable to 
that of the GT-Power simulation model; second, to 
improve the optimization efficiency based on the 
GT-Power model, the population size and iteration 
count in the NSAG-II algorithm were set to 
relatively small values—42 and 36, respectively—
much smaller than the values of 100 and 100 used 
in the optimization based on the ANN model. This 
led to the pareto optimal solutions obtained using 
the GT-Power model being less advantageous in 
terms of both selectivity and convergence. 

 

Figure 22(a). Optimization results based on three 
different models (Torque). 

 

Figure 22(b). Optimization results based on three 
different models (BSFC). 

(2) Optimization efficiency. 

The total time consumed by the three optimization 
methods is primarily dependent on the simulation 
duration of the GT-Power model. For each 
operating condition, both response surface-based 
optimization methods require the simulation of 
1,000 sample points, whereas the optimization 
method based on the GT-Power model requires 
one initialization and 36 iterations for each of the 42 
individuals in the population, amounting to 
approximately 1,550 simulations. As a result, the 
total optimization time for the GT-Power model-
based method is roughly 1.5 times that of the two 
response surface model-based methods. All 
calculations in this study were performed on a 
quad-core desktop with a 3.5 GHz processor and 
8GB of RAM. When converted to full-core 
computing power, the total optimization time of the 
three methods are illustrated in Figure 23. 
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Figure 23. Total optimization time of the three 
methods. 

(3) Trial and error cost. 

For the optimization methods based on response 
surface models, the trial-and-error cost is primarily 
reflected in the determination of the sample size. In 
the absence of prior experience, a series of values 
must be tested to determine an appropriate sample 
size that ensures the model's accuracy meets the 
required standards, while also maintaining an 
acceptable overall optimization efficiency. In 
contrast, for optimization methods based on the 
GT-Power model, the trial-and-error cost is 
reflected in two main aspects. First, the selection of 
optimization parameters, such as population size, 
iteration count, and penalty factors, requires 
multiple trials to determine, with each trial 
representing a complete optimization computation, 
thus consuming considerable time. Second, when 
ideal optimization results are not achieved, re-
optimization incurs additional time costs. Unlike the 
other two methods, which can leverage pre-
established response surfaces for rapid 
optimization, this method necessitates starting from 
scratch, coupling the NSGA-II algorithm with the 
GT-Power model for full simulation-based 
optimization. By comparing the trial-and-error costs 
of optimization using response surface models 
versus GT-Power models, it becomes evident that 
the former is dependent on a single parameter, 
whereas the latter involves multiple parameters 
and additional factors. This indicates that the trial-
and-error cost for the GT-Power model-based 
method is generally higher, and it exerts a greater 
impact on the overall optimization efficiency. 

(4) Applicability. 

From the above analysis, it can be concluded that 
the optimization effect of the polynomial model-
based method is moderately impacted by the 
model's accuracy, but it offers high optimization 
efficiency. The ANN model-based method, with its 
exceptional accuracy, yields excellent optimization 
results while also maintaining relatively high 
efficiency. The GT-Power model-based method, 
directly coupling the NSGA-II algorithm with the 

GT-Power model for optimization, provides high 
computational accuracy and excellent optimization 
results. However, due to the slower computation 
speed of the GT-Power model, the optimization 
efficiency is relatively lower. Based on the 
characteristics of the three optimization methods, 
they can be categorized according to the 
requirements for optimization effect and efficiency 
in different optimization problems, as shown in 
Table 7. 

Table 7. Classification of the applicability of three 
model-based optimization methods. 

Applicability 
Optimization effect requirements 

Low High 

Optimization 

effect 

requirements 

Low 

Polynomial 
model 

ANN model 

GT-Power model 

ANN model 

GT-Power 
model 

High 

Polynomial 

model 

ANN model 

ANN model 

From the perspective of data source applicability, 
the NSGA-II algorithm directly coupled with the GT-
Power model can only use GT-Power simulation 
data for engine optimization. In contrast, response 
surface-based optimization methods can not only 
utilize simulation data for modeling but, if conditions 
permit, also incorporate experimental data to 
construct response models, thereby enhancing 
optimization accuracy. Thus, response surface-
based methods are more adaptable to various data 
sources, offering greater flexibility. 

In the case of optimization with many variables, 
using the polynomial model-based method may 
result in insufficient modeling accuracy due to the 
large sample size required. The GT-Power model-
based method, on the other hand, may lead to 
excessively long optimization times as both 
population size and iteration count need to increase 
with the number of variables. The ANN model-
based method, however, effectively addresses 
these issues due to its strong nonlinear mapping 
capability and high modeling accuracy. 
Furthermore, its total optimization time primarily 
depends on sample computation, which increases 
at a slow rate as the number of variables grows. 
Therefore, the ANN model-based optimization 
method is better suited for complex, multivariable 
engine optimization problems. The main 
advantages and disadvantages of the three 
optimization methods are summarized in Table 8. 
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Table 8. Advantages and disadvantages of the 
three optimization methods. 

Methods Advantages Disadvantages 

Polynomial 
model 
combined 
with 
NSGA-Ⅱ 

High 
optimization 
efficiency, 
low trial and 
error cost, 
strong data 
acceptance 
capability, 
and flexible 
application 

Simple and 
reliable 
modeling 

Average 
modeling 
accuracy, 
inferior 
optimization 
effect 

ANN 
model 
combined 
with 
NSGA-Ⅱ 

High 
modeling 
accuracy, 
good 
optimization 
effect and 
wide 
applicability 

Modeling is 
relatively 
complex, and 
has high 
requirements 
on the quality 
of training data, 
the design of 
network 
structure, and 
the selection of 
training 
parameters. 

GT-Power 
model 
combined 
with 
NSGA-Ⅱ 

Accurate and reliable 
model, good optimization 
effect 

Low 
optimization 
efficiency, high 
trial and error 
cost. 

7 CONCLUSIONS 

This study focuses on a 1.3T methanol engine, 
employing three multi-objective optimization 
methods—polynomial model combined with 
NSGA-II algorithm, ANN model combined with 
NSGA-II algorithm, and GT-Power model 
combined with NSGA-II algorithm—to optimize the 
engine performance. A comprehensive comparison 
and analysis of the advantages and disadvantages 
of these methods were conducted. The main 
conclusions are as follows: 

(1) Multi-objective optimization using the 
polynomial model combined with the NSGA-II 
algorithm resulted in a 2.39% average increase in 
engine torque and an 8.34% average reduction in 
BSFC. 

(2) Multi-objective optimization using the ANN 
model combined with the NSGA-II algorithm 
significantly improved the engine's overall 
performance in terms of power and fuel economy. 
The torque increased by an average of 2.22%, and 
the BSFC decreased by an average of 10.11%. 

(3) Optimization through coupling the GT-Power 
model with the NSGA-II algorithm led to an average 
torque increase of 2.24% and an average reduction 
of 10.05% in BSFC. 

(4) The multi-objective optimization method based 
on the polynomial model is simple, reliable, and 
highly efficient, but its optimization results are 
relatively modest. The GT-Power model-based 
optimization method yields better results, though its 
optimization efficiency is lower, and its trial-and-
error cost is high. Reducing population size or 
iteration count to improve efficiency could 
compromise the optimization outcome. The ANN 
model-based optimization method, however, 
strikes a balance between good optimization 
results and high efficiency, making it highly 
applicable, although it requires more rigorous 
modeling. 
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