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ABSTRACT

Hydrogen (H2) as a carbon-free fuel and its excellent combustion properties has been extensively
attracted the interest for utilizing H2 as a energy career to replace the conventional fossil fuels  in
internal combustion engines (ICEs) application. Accordingly, the primary focus of this study is to
investigate the dynamics of the non-reactive H2 jet with different nozzles and operating conditions,
which is crucial for fuel/air mixing in direct injection (DI) engines. High-speed z-type Schlieren imaging
is employed in a constant volume chamber to study the effect of nozzle geometry (out-ward opening,
single-hole) and  pressure ratio (PR= injection pressure/chamber pressure) on the H2 jet
characteristics. To gain an insight into the velocity field of the dynamics of the H2 jet, an optical flow
estimation based on the change of the brightness of the two consequencial images are applied for
velocity estimation. The novelty originates from the comprehensively investigating the dynamics of the
hydrogen jet under various engine-like conditions.
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Abstract: Hydrogen is a carbon-free fuel, which 
attracts significant attention due to its exceptional 
combustion properties and potential to replace 
conventional fossil fuels in internal combustion 
engine (ICE) applications. Understanding the 
injection and mixing dynamics of H₂ is essential to 

harness its advantages effectively. This study 
investigates the dynamics of hydrogen jets under 
various engine-like conditions, utilizing advanced 
imaging and computational techniques to provide 
insights critical for optimizing fuel-air mixing in 
direct injection (DI) engines. Two different injector 
configurations, a hollow cone nozzle and a 
modified single-hole nozzle based on piezo 
gasoline direct injector, were tested to explore their 
effects on jet behavior.  To study the non-reactive 
H₂ jet, high-speed Z-type Schlieren imaging was 

employed for the visualization of density gradients 
within the jet under varying conditions of nozzle 
geometry and pressure ratio (PR, defined as 
injection pressure to chamber pressure). The 
experiment systematically analyzed the impact of 
these parameters on jet penetration, spread, and 
mixing characteristics. To estimate the velocity field 
of the H₂ jet, three optical flow methods, including 

OpticalFlow_RAFT, OpticalFlow_Farneback, 

and conventional OpticalFlow_PIV were applied for 
the velocity field estimation. The results indicated 
that the RAFT (Recurrent All-Pairs Field 
Transforms) method demonstrated the highest 
accuracy, particularly in identifying local velocity 
variations within the jet. This capability highlights 
the potential of RAFT as a robust tool for studying 
complex flow dynamics of hydrogen jets using high-
speed schlieren. The novelty of this research lies 
integrating advanced optical diagnostics with 
computational analysis, which offers 
comprehensive examination of hydrogen jet 
behavior across a range of engine-relevant 
conditions, including nozzle geometries and 
pressure ratio. By this work provides valuable 
insights into the underlying mechanisms driving 
hydrogen jet dynamics. The findings contribute to 
the optimization of hydrogen injection strategies for 
next-generation ICEs, supporting the transition 
toward sustainable and zero-emission 
transportation technologies. 

Key Words: Hydrogen Jet, Schlieren, Optical 
Flow, Velocity Field 

1 INTRODUCTION 

Hydrogen (H2) has gained substantial interest as a 
clean alternative to fossil fuels, particularly in the 
context of sustainable energy transitions and 
decarbonization goals. When produced from 
renewable sources, H2 combustion emits only 
water vapor, positioning it as a promising candidate 
for reducing greenhouse gas emissions in 

transportation, power generation, and various 
industrial processes. Among the strategies for H2 
utilization, high-pressure injection in combustion 
systems stands out for its potential to enable rapid 
fuel-oxidizer mixing and more efficient heat release 
[1]. In internal combustion engines (ICEs), gas 
turbines, and other high-performance applications, 
achieving a comprehensive understanding of high-
pressure H2 jets is therefore pivotal for engineering 
design and ensuring operational safety. 

However, high-pressure H2 jets introduce several 
scientific and engineering challenges, including the 
need to characterize their transient behavior, 
mixing with oxidizers, ignition, and flame 
propagation in real-world conditions [2]. Thus, 
accurately estimating the velocity fields of these 
jets is essential to understanding and optimizing 
hydrogen combustion for enhanced safety, 
performance, and reliability. Principally, velocity 
fields govern the jet penetrates its environment, 
dictating near-field mixing and eventual combustion 
characteristics [3]. The dynamics of entrainment, 
shear-layer formation, and turbulent breakdown all 
hinge upon local flow speeds and directions. 
Moreover, velocity information is necessary to 
characterize the transient phenomena, such as 
shock waves, expansion fans, and vortex formation 
that arise sonic and supersonic jets during high-
pressure injection [4]. These transients can 
significantly influence ignition and flame 
propagation, shaping overall efficiency and 
pollutant formation. Last but not the least, velocity 
data support the validation of computational fluid 
dynamics (CFD) models, which serve as predictive 
tools for optimizing hydrogen injection strategies in 
a variety of energy systems [5]. In essence, 
capturing the unsteady velocity fields of high-
pressure H2 jets is a cornerstone for designing 
robust, clean, and efficient hydrogen-fueled 
solutions. 

Historically, Particle Image Velocimetry (PIV) has 
been the standard experimental method for velocity 
field measurements in fluid mechanics [6]. By 
seeding the flow with tracer particles and 
illuminating them via pulsed lasers, PIV enables a 
correlation-based determination of local velocities 
between two or more consecutive images. Despite 
its successes, several constraints limit the 
usefulness of PIV for high-pressure H2 jets. For 
instance, the velocity measurement highly depends 
on the particle selection [7]. The unsuitable particle 
material or sizes could distort the flow and 
significantly influence the velocity accuracy. Even if 
robust particles are identified, achieving a uniform 
seeding density becomes problematic, especially 
under conditions where pressure fluctuates rapidly 
or transitions from subsonic to supersonic [8]. 
Additionally, high-pressure H2 jets tests generally 
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conducted in high-pressure constant volume 
chamber (CVC) to simulate the engine-like 
conditions. Window fouling, strong density 
gradients, and shock reflections can degrade 
image quality [9]. Ensuring that sufficient laser light 
is delivered and reflected within the test section to 
illuminate the seed particles uniformly adds another 
layer of complexity [10]. Furthermore, setting up a 
high-speed PIV system under pressurized H2 
conditions requires specialized safety measures. 
The equipment, such as high-intensity lasers, 
cameras, seeding systems adds logistical 
constraints that can limit the range of experimental 
conditions explored [11]. These above limitations 
highlight the conventional PIV can be impractical or 
suboptimal for measuring velocities in high-
pressure H2 flows. Researchers are thus motivated 
to explore alternative, seedless and more flexible 
methods for velocity estimation. 

Schlieren imaging is an established optical 
technique that visualizes refractive index gradients 
in transparent media [12]. By collimating light 
through a flow and using cutoff optics (e.g., a knife 
edge or a focused slit) to capture slight deflections, 
schlieren systems produce contrast images where 
intensity variations correspond to density gradients. 
When used at high frame rates, schlieren imaging 
can effectively capture the evolving structure of 
shock waves and expansion fans in high-pressure 
jets. Flow features such as turbulent mixing layers, 
vortex and shear layers, made visible through large 
density gradients [13], [14]. Because schlieren 
imaging does not require seeding, it avoids many 
drawbacks of PIV. It is especially suitable for high-
pressure H2 experiments, where the large density 
changes inherent to the jet strongly contribute to 
the refractive index gradients. Moreover, schlieren 
systems can be configured with high-speed 
cameras that record thousands of frames per 
second, capturing the fleeting dynamics of jet 
development. 

However, schlieren imaging excels at visualizing 
density gradients, it does not inherently provide 
velocity vectors or magnitude estimates [15]. 
Instead, researchers interpret the evolving density 
features qualitatively. To bridge this gap, optical 
flow algorithms from computer vision can be 
applied to sequential schlieren images, thus 
enabling quantitative velocity field reconstruction 
[16], [17]. Optical flow in fluid dynamics contexts 
leverages the assumption that local intensity 
changes in successive frames are primarily due to 
fluid motion rather than illumination or background 
variations. Classical optical flow techniques include 
the Horn–Schunck (global, variational framework) 
[16] and Lucas–Kanade (local, correlation-based) 
[17] methods. The basis of the optical flow methods 
rely on the intensity of a point in the flow is assumed 

to remain constant between frames, allowing 
feature tracking. Neighboring velocity vectors are 
often encouraged to vary smoothly except at 
discontinuities. Adapting these principles to 
schlieren images can be complex, because density 
gradients can change in intensity due to 
thermodynamic effects or shock reflections [18]. 
Nonetheless, with careful preprocessing-such as 
background subtraction, contrast enhancement, 
and noise filtering-classical optical flow solutions 
can yield approximate velocity fields, especially 
where flow features are sharply defined and move 
cohesively [19]. Recent developments in deep 
learning have led to significant improvements in 
optical flow accuracy and robustness [20], [21], 
[22]. Neural network architectures, such as 
FlowNet [23], [24], PWC-Net [25], and RAFT [26], 
[27], are trained on large datasets of image pairs 
with known ground-truth motion. They learn to 
predict dense pixel-wise displacement fields by 
identifying correspondences between frames at 
multiple scales. 

For high-pressure H2 jets, deep learning-based 
optical flow offers several advantages, such as 1) 
robust feature extraction: deep neural networks can 
adaptively learn feature representations that 
capture subtle variations in schlieren images, 
potentially outperforming classical algorithms in 
challenging flow regions or low-contrast areas [28]. 
2) High-speed processing: once trained, these 
models can infer optical flow in near-real-time, 
enabling quick analysis of massive schlieren 
datasets generated in high-speed imaging [29]. 3) 
Generalization: networks exposed to a variety of 
synthetic or experimental flow patterns may 
generalize to different injection pressures, nozzle 
geometries, or boundary conditions, provided the 
training dataset is sufficiently diverse [30]. 

Therefore, optical flow-based velocity estimation 
from high-speed schlieren data holds significant 
promise for advancing H2 jet and combustion 
studies. By removing the need for seeded particles, 
researchers can more easily study flows at extreme 
pressures or temperatures where traditional PIV 
struggles, in particular, in the context of ultra-high-
pressure H2 jets. Velocity field insights inform 
injector design, nozzle geometry, and injection 
timing. Small adjustments to these parameters can 
dramatically influence jet dynamics, flame stability, 
thermal efficiency, and pollutant formation in H2 
combustion systems [31]. High-speed schlieren 
imaging combined with optical flow can be 
implemented in optical engine to observe the 
interplay between the H2 jet and in-cylinder flows. 
This integration helps guide the optimization of 
ignition protocols, swirl or tumble motions, and 
post-injection strategies. As H2-based combustion 
models become more sophisticated, validating 
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them against experimental data remains 
paramount [32]. High-resolution velocity fields 
derived from optical flow enable rigorous cross-
checks of turbulence models, chemical kinetics, 
and boundary condition assumptions in CFD 
simulations. 

A systematic investigation of high-speed schlieren 
imaging and optical flow-based velocity estimation 
for high-pressure H2 jets is presented, with an 
emphasis on how different optical flow methods 
perform in accurately capturing H2 jet velocities. 
The study begins by introducing detailed 
experimental analyses of H2 jets under diverse 
operating conditions and employing two distinct 
nozzle configurations. Subsequently, the 
theoretical foundations of optical flow in fluid 
dynamics are reviewed. In the results and 
discussion section, jet dynamics are illustrated, and 
three optical flow techniques are compared in 
estimating velocity fields at varying pressures and 
nozzle designs. The paper concludes with 
experimental validation, practical 
recommendations for future H2 jet research, and 
an outlook on incorporating these techniques into 
advanced H2 jet and combustion studies. 

2 EXPERIMENTAL SETUP AND 
METHODOLOGY 

In this section, the experimental setup and its 
components, the optical system, the test matrix, the 
image post-processing method, and the error 
analysis are described, respectively. 

2.1 H2 injection system 

The experimental apparatus comprises four 
primary circuits, as shown in Fig.1: (1) the injection 
line, (2) the chamber pressurizing line, (3) the 
exhaust line, and (4) a control system. The injection 
line is a three-meter hose connecting the H2 supply 
cylinder to the injector; a pressure regulator and 
pressure sensor are integrated into this line to 
adjust and monitor injection pressure. Based on 
numerical simulations conducted with GT-Power, 
the three-meter hose length is sufficient to maintain 
a stable injection pressure during the injection 
phase. The second circuit, the chamber 
pressurizing line, runs from a nitrogen bottle rack to 
the constant-volume chamber and consists of a 
pressure regulator, a hose, and a needle valve 
positioned immediately upstream of the chamber. 
The third circuit, the exhaust line, contains (1) a 
spring relief valve to release pressure upon 
reaching the maximum chamber pressure, (2) a 
shut-off valve for emptying the chamber, and (3) a 
regulating spring valve to modulate the chamber 
pressure in conjunction with the gas supply. Finally, 
the control system employs LabVIEW software and 
a National Instruments driver to synchronize the 

injector with a high-speed camera (Phantom 
V2012), while also collecting real-time chamber 
pressure and temperature measurements through 
dedicated sensors. 

 

Fig. 1 Experimental setup for the high-pressure H2 
jet using schlieren imaging 

Fig. 2 depicts the hollow-cone outwardly opening 
injector utilized for high-pressure H2 jet studies. 
This injector originally designed as a commercially 
available gasoline direct injection (GDI) injector by 
Siemens VDO Automotive, it operates at rail 
pressures of up to 200 bar. The cross-sectional 
view highlights the injector's advanced design, 
featuring a needle directly actuated by a 
piezoelectric stack. This stack is controlled by a 
National Instruments control unit, which precisely 
adjusts the voltage and current profiles, enabling 
fine-tuned regulation of the needle lift. This precise 
control allows for accurate manipulation of the 
injector's opening and closing speeds, ensuring 
optimal injection performance. 

To explore the influence of nozzle configuration on 
H2 jet dynamics, the injector was modified from its 
original hollow-cone design to a single-hole nozzle. 
This modification facilitates fundamental studies of 
H₂ jet behavior, providing deeper insights into the 

role of nozzle geometry in governing jet 
characteristics under high-pressure conditions. 
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Fig.2 Schematic of piezeo injector used for the 
high-pressure H2 jets 

2.2 High-speed schlieren imaging 

In this study, a high-speed Z-type Schlieren 
imaging technique is employed to visualize the H2 
jets, providing detailed insights into flow dynamics. 
The Schlieren system, essentially a shadowgraph 
enhanced with a schlieren cutoff (e.g., a knife edge 
or iris), operates on the principle that light rays bend 
when encountering fluid density gradients. In the Z-
type Schlieren configuration, traditional lenses are 
replaced with parabolic concave mirrors due to two 
significant advantages. First, mirrors are free from 
chromatic aberrations, unlike lenses. Second, while 
achromatic lenses can minimize chromatic 
aberrations, they are prohibitively expensive, 
especially for large free aperture diameters [32]. 

Figure 2 illustrates a schematic of the high-speed 
Z-type Schlieren system. In this setup, a collimated 
light beam from a high-power monochromatic laser 
(Cavitar Smart) spotlight, reflected by a mirror, 
illuminates the jet. As the light passes through the 
jet, density gradients cause refraction. A second 
parabolic mirror focuses the refracted light onto the 
lens of the high-speed camera, positioned behind 
an iris. The iris partially obstructs refracted light 
beams, creating high-contrast Schlieren images. 
Due to the high chamber pressures and associated 
safety considerations, the injector is mounted on 
the top center of the chamber, with visualization 
conducted through lateral quartz windows. 

Although the inclusion of quartz windows in the 
optical path can degrade image quality [32], this 
issue is effectively mitigated using background 
subtraction during image post-processing. 

 

Fig.3 Schematic of the z-type schlieren imaging 
system 

Table 1 details the components of the optical 
system, including specifications of the Schlieren 
setup. This configuration ensures reliable and high-
quality imaging of the dynamic hydrogen jet under 
engine-relevant conditions. 

Table 1. Optical system components. 

Component Feature 

Electrical power of the LED 

High-speed 
schlieren with 
wavelength of 
640 nm 

Diameter of aperture’s slit 3 mm 

Focal length of first mirror 609,6 mm 

Focal length of second mirror 762 mm 

Percentage of the knife-edge 
cut-off 

Approximately 
60% 

Exposure time of the camera 10 μs 

Frame rate 34,000 

Resolution 768 × 768 

2.3 High-speed schlieren imaging 

Fig.4 demonstrates the post-processing workflow 
for Schlieren images of H2 jets using two different 
injectors: an outward-opening piezo injector and a 
modified single-hole injector. Starting with the raw 
Schlieren images capturing the density gradients in 
the jet, the region of interest is isolated through 
image cropping. A 2D convolution is then applied to 
enhance the edges of the jets and highlight key 
features within the flow. This is followed by 
binarization, where the jet is segmented from the 
background by assigning distinct intensity values to 
the jet and non-jet regions. Finally, boundary 
detection is performed to outline the jet structure, 
with the detected contours superimposed on the 
original image for clear visualization. This 
systematic process enables precise analysis of jet 
dynamics, such as shape, penetration, and mixing 
behavior, while facilitating a direct comparison 
between the effects of different nozzle geometries. 



 

CIMAC Congress 2025, Zürich                Paper No. 042             Page 7 

 

Fig.4 Workflow of the image post-processing for 
hollow-cone and single-hole injectors 

2.4 Optical flow method 

The domain of optical flow estimation has 
advanced considerably since its inception in the 
1950s [21]. A fundamental principle in this field is 
the brightness constancy constraint, which posits 
that the intensity of a pixel remains unchanged as 
it moves within successive frames. Formally, this 
principle is expressed as: 

𝜕𝐼

𝜕𝑡
+ 𝑢

𝜕𝐼

𝜕𝑥
+ 𝑣

𝜕𝐼

𝜕𝑦
= 0                 (1) 

where 𝐼 represents the image intensity, 𝑢 and 𝑣 are 

the horizontal and vertical components of the 

optical flow vector, and 
𝜕𝐼

𝜕𝑡
 , 

𝜕𝐼

𝜕𝑥
 , and 

𝜕𝐼

𝜕𝑦
 are the 

temporal and spatial derivatives of 𝐼. 

However, the brightness constancy constraint 
inherently leads to the aperture problem, as 
illustrated in Fig.5. The upper row shows the actual 
movement of the purple rectangle, while the lower 
row depicts perceived movement of the purple 
rectangle on the smaller area (green). It can be 
seen that only the horizontal component of the 
motion is evident. This issue arises from the 
inability to uniquely determine the motion of object 
based on local information observed through a 
limited spatial region (the "aperture"). 
Mathematically, solving for the motion components 
𝑢 and 𝑣 using only Eq. (1) results in an 

underdetermined system, as it provides a single 
equation with two unknowns. To overcome this 
limitation and establish a well-posed framework, it 
is necessary to incorporate additional constraints or 
regularization assumptions that leverage spatial or 
temporal coherence in the motion field. 

 

Fig.5 Depiction of the aperture problem of the 
conventional optical flow method [21]. 

To address these challenges, two classical 
variational frameworks are commonly employed for 
estimating dense optical flow from sequential 
frames. The first is the global Horn-Schunck (HS) 
method [16], which imposes a global smoothness 
constraint across the entire image. The second is 
the local Lucas-Kanade (LK) method [17], which 
instead relies on local constancy assumptions to 
infer motion. 

The HS method tackles the aperture problem and 
mitigates flow distortions by introducing a global 
smoothness constraint, which ensures gradual flow 
variations across adjacent pixels. This approach 
formulates optical flow estimation as the 
minimization of a global energy functional, 
expressed as: 

𝐸 = ∬[(𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡)
2
+ 𝛼2(‖𝛻𝑢‖2 +

‖𝛻𝑣‖2)]𝑑𝑥𝑑𝑦      (2) 

where 𝐼𝑥, 𝐼𝑦 , 𝐼𝑡 and are gradients of the image 

intensity along the 𝑥, 𝑦, and time dimensions, 

respectively, 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦)form the optical flow 

vector at position (𝑥, 𝑦), 𝛼 is a regularization 

constant that controls the balance between data 
fidelity and smoothness in the estimated flow, and 
𝛻𝑢 and  𝛻𝑣 denote the spatial gradients of the 

optical flow components. 

𝐼𝑥(𝑝) ∙ 𝑉𝑥 + 𝐼𝑦(𝑝) ∙ 𝑉𝑦 = 𝐼𝑡(𝑝)                   (3) 

By aggregating data from nearby pixels 
(𝑞1, 𝑞2, ⋯ , 𝑞𝑛  ) the LK method sets up a system of 

linear equations 𝐴𝑣 = 𝑏: 

𝐴 =

[
 
 
 
𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

⋮              ⋮
𝐼𝑥(𝑞𝑛) 𝐼𝑦(𝑞𝑛)]

 
 
 

, 𝑣 = [
𝑉𝑥

𝑉𝑦
], 𝑏 = [

−𝐼𝑡(𝑞1)

−𝐼𝑡(𝑞2)
⋮

−𝐼𝑡(𝑞𝑛)

]   (4) 

As this system is generally overdetermined, the LK 
method uses the least squares principle, solving for 
𝑣 as: 
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𝑣 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏                         (5) 

Despite the foundational progress achieved by the 
HS and LK methods, handling intricate flow 
scenarios remains an active area of research, 
prompting the development of more sophisticated 
optical flow estimation techniques. For instance, 
high-order pyramid smoothness constraints [33] 
have been proposed to preserve motion 
boundaries and improve performance in complex 
scenes. Methods like DeepFlow [34] and EpicFlow 
[35] combine traditional variational frameworks with 
feature-matching approaches to track motion 
between consecutive frames, effectively 
addressing large displacements [36]. The 
emergence of deep learning further revolutionized 
the field, beginning with FlowNet [23], which 
introduced FlowNet-S and FlowNet-C architectures 
based on the encoder–decoder U-Net [37]. 
FlowNet 2.0 [24] subsequently built on these 
designs by stacking multiple FlowNet modules to 
achieve substantially improved accuracy[38]. 
Meanwhile, SPyNet [39] offered a compact, 
coarse-to-fine approach that trades off some 
accuracy to handle large motions. More recently, 
PWC-Net [25] integrated feature extraction, cost 
volume, and stereo matching concepts into a 
modified spatial pyramid network, whereas RAFT 
[26] introduced recurrent all-pairs field transforms 
and a recurrent update operator, offering a novel 
perspective on optical flow estimation that diverges 
from traditional spatial pyramidal strategies. 

Among all above optical flow methods, RAFT offers 
an estimation of Dense Optical Flow assigns each 
pixel a 2D flow vector describing the horizontal and 
vertical displacement over a time interval based on 
a comprehensive all-pairs correlation volume and a 
recurrent refinement mechanism. First, RAFT 
extracts features from both images in a pair, then 
constructs a multi-scale correlation volume that 
encodes similarity scores between every pixel in 
the first image and every pixel in the second. Unlike 
earlier optical flow methods that rely on explicit 
warping or coarse-to-fine pyramids, correlation 
volume of RAFT remains in a consistent feature 
space, allowing local and global cues to be 
captured without repeated spatial downsampling. 
Once the correlation volume is established, RAFT 
employs a recurrent unit to iteratively refine the flow 
field. At each iteration, the model uses the 
correlation volume to query motion information and 
update the flow estimate in a pixel-wise manner. 
This iterative process enables the network to 
correct errors from previous iterations by focusing 
on local details and larger-scale context, while 
maintaining a constant resolution for all flow 
updates. As a result, RAFT typically achieves both 
high accuracy and robustness, outperforming many 
prior optical flow models on standard benchmarks. 

In this study, three distinct optical flow methods 
were selected for velocity field estimation-
OpticalFlow_RAFT (a deep learning-based 
approach), OpticalFlow_Farneback (a classical 
optical flow method), and OpticalFlow_PIV (an 
image-based adaptation of conventional Particle 
Image Velocimetry). This combination enables a 
systematic comparison of modern deep learning, 
traditional variational, and PIV-derived techniques 
under the same experimental conditions. 

3 RESULTS AND DISCUSSIONS 

This section presents the experimental results for 
H2 jets under varying conditions and utilizing two 
distinct nozzle configurations. First, it highlights the 
differences in overall jet structure between hollow-
cone and single-hole nozzles. Next, it examines 
how pressure ratio and nozzle geometry influence 
jet penetration, cross-sectional area, volume, and 
tip velocity. Finally, the velocity field estimations 
obtained from OpticalFlow_RAFT, 
OpticalFlow_Farneback, and OpticalFlow_PIV are 
compared to evaluate their relative performance. 

3.1 Jet structure 

Prior to the quantitative analysis of the H2 jet, the 
macroscopic jet structure over consecutive time 
intervals is compared with various conditions and 
nozzle configurations.  

Fig. 6 and 7 illustrate H2 jets injected from hollow-
cone and single-hole nozzles at a pressure ratio of 
20 and10 (i.e., Pinj=100 bar, Pch=5bar) with a 
needle lift of 25 μm. For the hollow-cone nozzle, the 
jet exhibits a distinct outwardly expanding 
structure. At the initial stages (0.32 ms ASOI), the 
jet shows a small, rounded plume near the injector 
tip, indicating the initial penetration phase. As time 
progresses, the jet expands radially outward, 
forming a broader conical shape (visible at 0.62 ms 
and beyond). By 1.5 ms ASOI, the hollow-cone jet 
demonstrates significant radial spread, with a 
relatively uniform density distribution across the 
plume, reflecting effective dispersion but limited 
axial penetration. In contrast, the single-hole nozzle 
produces a highly collimated and elongated jet. At 
0.32 ms ASOI, the jet appears narrow and 
concentrated, with clear axial penetration. Over 
time (0.62 ms to 1.5 ms ASOI), the single-hole jet 
maintains its streamlined shape, extending further 
axially into the chamber. The boundary of the jet 
shows less radial expansion compared to the 
hollow-cone nozzle, emphasizing its focused 
delivery and higher penetration depth.  

Overall, the hollow-cone nozzle promotes broader 
radial dispersion, potentially enhancing fuel-air 
mixing over a larger volume, while the single-hole 
nozzle achieves greater axial penetration, suitable 
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for targeted injection strategies. These differences 
highlight the influence of nozzle geometry on jet 
dynamics, with each design tailored for specific 
mixing and combustion requirements in hydrogen-
fueled engines. 

 

Fig. 6 The H2 jets injected from hollow-cone and 
single-hole nozzles at a pressure ratio of 20 (i.e., 
Pinj=100 bar, Pch=5bar) and a needle lift of 25 μm 

Fig.7 shows the jet evolution under the pressure 
ratio of 10 with increasing the chamber pressure 
from 5 bar to 10 bar. The jet expansion is noticeably 
more restricted compared to PR = 20, with slower 
radial growth and a smaller cone diameter at each 
time step. The reduced momentum results in lower 
penetration and dispersion, indicating that the H2 jet 
is less energetic and more localized. 

 

Fig. 7 The H2 jets injected from hollow-cone and 
single-hole nozzles at a pressure ratio of 10 (i.e., 
Pinj=100 bar, Pch=10bar) and a needle lift of 25 μm 

To further estimate the jet structure from the 
hollow-cone and single-hole nozzles, the jet-to-jet 
variations are compared with 10 repetitions. Fig. 8 
and 9 demonstrate the jet-to-jet variation and 
averaged jets from hollow-cone and single-hole 
nozzles at a pressure ratio of 20 and10 (i.e., 
Pinj=100 bar, Pch=5bar) with a needle lift of 25 μm. 
The results indicate that both nozzles show very 
low jet-to-jet variation in the jet structure with more 
90% of area of the jet over 10 injections, which 
highlight the relability for the furture investigations. 
While the single-hole nozzle shows greater jet-to-
jet variation, particularly in the radial expansion of 
the jet boundaries. This could be due to the 
complex dynamics of the H2 and air entrainments 
with higher jet tip velocity, which leads to 
fluctuations in the distribution of the jet. The 
averaged jet structure of the hollow-cone nozzle 
highlights its broader dispersion, which promotes 
fuel-air mixing over a larger volume, while 
averaged jet structure of the single-hole nozzle 
emphasizes its focused and highly directional 
penetration, suitable for applications requiring 
precise injection. 

 

Fig. 8 The jet-to-jet variation and averaged jets 
from hollow-cone and single-hole nozzles at a 
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pressure ratio of 20 (i.e., Pinj=100 bar, Pch=5 bar) 
and a needle lift of 25 μm 

Fig.9 demonstrates the jet-to-jet variation and 
averaged jets from hollow-cone and single-hole 
nozzles at a pressure ratio of 10 (i.e., Pinj=100 bar, 
Pch=10bar) and a needle lift of 25 μm. Compared to 
the higher pressure ratio both nozzles, the jets at 
lower pressure ratio exhibit reduced axial and radial 
dispersion due to the lower injection momentum. 
The outward expansion is less pronounced, 
resulting in a smaller jet structure. Jet-to-jet 
variations are limited because the lower pressure 
ratio generates a more stable injection with 
reduced turbulence. The averaged jet structure is 
compact, with slower growth over time. The lower 
energy limits the ability of the H2 to overcome 
chamber resistance, leading to less effective 
mixing. 

 

Fig. 9 The jet-to-jet variation and averaged jets 
from hollow-cone and single-hole nozzles at a 
pressure ratio of 10 (i.e., Pinj=100 bar, Pch=10bar) 
and a needle lift of 25 μm 

3.2 Hydrogen jet evolution 

Fig. 10 shows the quantitative jet evolution based 
on the image post-processing. The findings reveal 

distinct characteristics of H2 jets under different 
injection pressure ratios (Pr) and nozzle 
configurations. Higher pressure ratios (Pr = 20) 
significantly enhance both penetration and mixing 
efficiency, with the single-hole nozzle 
demonstrating the fastest jet penetration and 
highest velocity due to its focused and streamlined 
design, making it suitable for targeted fuel delivery. 
Conversely, the hollow-cone nozzle exhibits 
shorter jet penetrations, areas, jet volumes, even 
though facilitating better radial dispersion and 
mixing. However, with increased chamber pressure 
(higher chamber density), jet expansion is 
suppressed, reducing penetration and radial 
spread for both nozzles. Lower Pr results in slower 
jets with reduced penetration and mixing potential, 
while higher chamber densities enhance stability 
but further limit jet growth. These findings 
emphasize the trade-offs between mixing efficiency 
and penetration, highlighting the influence of nozzle 
geometry and operating conditions on H2 jet 
dynamics. 
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Fig. 10 H2 jet evolution under Pr=20 and Pr=10 
with hollow-cone (HC) and single-hole(SH) 

nozzles 

3.3  Velocity estimation of hydrogen jet 

Fig. 11 compares the velocity fields of the 
H₂ jet estimated using three optical flow 
methods: (a) OpticalFlow_RAFT, (b) 
OpticalFlow_Farneback, and (c) 

OpticalFlow_PIV. Fig.11(a) indicates that 
RAFT provides highly detailed and dense 
vector fields, capturing small-scale local 
velocity variations within the jet. The 
resolution of the vectors is consistent, 
especially in regions of high turbulence 
near the jet boundaries.The vectors are 
well-aligned with the flow direction, 
indicating a precise representation of jet 
dynamics. RAFT captures a wide range of 
velocity magnitudes with clear 
differentiation between high-velocity core 
regions and low-velocity jet peripheries. 
Velocity peaks are observed near the 
injection point, gradually decreasing as the 
jet disperses. The method effectively 
highlights localized high-velocity regions. 

Fig.11(b) shows that Farneback generates a 
relatively sparse vector field compared to RAFT, 
with less detail in turbulent regions. The vectors are 
smoother, but some directional inconsistencies 
appear in high-gradient regions. The method 
captures the general flow direction but struggles 
with finer details, particularly in regions of rapid 
velocity change. Meanwhile, Farneback provides a 
smoother magnitude distribution but lacks the 
ability to differentiate high-velocity cores from low-
velocity regions effectively. Velocity magnitudes 
are generally underestimated compared to RAFT, 
leading to less precise characterization of jet 
dynamics. 

The conventional OpticalFlow_PIV method is 
presented in Fig.11(c), which indicates that this 
method produces a moderate-density vector field, 
with clear and consistent alignment along the jet 
axis. However, the vectors are too mess and need 
to be further smoothen manually. The method 
performs well in capturing large-scale jet dynamics 
but loses detail in regions of complex turbulence. 
Additionally, the OpticalFlow_PIV shows clear 
velocity magnitude gradients, with a sharp 
distinction between the high-velocity core and the 
surrounding low-velocity regions.  

Among the methods, RAFT stands out for its ability 
to resolve fine-scale details and accurately capture 
velocity magnitude distributions, making it the most 
reliable choice for high-resolution hydrogen jet 
analysis. OpticalFlow_PIV provides a good balance 
between accuracy and computational efficiency for 
large-scale studies, while Farneback is limited to 
capturing general trends with lower precision. 
These findings highlight the trade-offs between 
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resolution, accuracy, and computational demands 
across the optical flow methods. 

 

Fig. 11 The comparison of three optical flow 
methods on the H2 jet velocity estimation with a 
single-hole nozzle and Pr=20, (a) 

OpticalFlow_RAFT, (b) OpticalFlow_Farneback 

and (c) OpticalFlow_PIV 

Fig. 12 and Fig. 13 demonstrates the velocity field 
of the H2 jet from hollow-cone and single-hole 
nozzles at a pressure ratio of 20 (i.e., Pinj=100 bar, 
Pch=10bar) and 10 (i.e., Pinj=100 bar, Pch=10bar). 
The velocity field comparison between the hollow-
cone and single-hole nozzles highlights their 
distinct flow characteristics. The hollow-cone 
nozzle exhibits a broad radial dispersion, with 
velocity vectors distributed outward in a 
symmetrical cone-like pattern. Velocity magnitudes 
are relatively low due to the energy spreading 
across a wider area, resulting in a slower, less 
focused jet. In contrast, the single-hole nozzle 
produces a more collimated jet with concentrated 
velocity vectors aligned along the jet axis, 
indicating higher axial penetration and greater 
velocity magnitudes near the core. Regarding to 
the velocity estimation, the velocity field estimation 
on the hollow-cone jets shows challenges in 
accurately resolving fine-scale details due to the 
broad radial dispersion, where velocity vectors are 
widely distributed. This dispersion leads to lower 
velocity magnitudes and potential underestimation 

of localized flow dynamics near the edges of the 
spray. However, for the single-hole nozzle, due to 
more collimated jet, the velocity field estimation 
captures the high axial velocities with better 
precision in the downstream of the jet, particularly 
along the jet core. But in the near-nozzle and 
center-line region, due to the denser optics and 
less contrast, the flow velocity could be under 
predicted. Overall, the single-hole nozzle's 
concentrated flow provides a more straightforward 
and accurate estimation of velocity fields, while the 
hollow-cone nozzle introduces complexity due to its 
dispersed and multi-directional flow, potentially 
affecting the resolution of smaller velocity gradients 
and turbulence. 

 

Fig. 12 The velocity field estimation of the H2 jets 
from hollow-cone and single-hole nozzles at a 
pressure ratio of 20 (i.e., Pinj=100 bar, Pch=5 bar)  

Fig. 13 demonstrates the comparison between high 
(Pr = 20) and low (Pr = 10) pressure ratios reveals 
significant differences in jet dynamics for both 
hollow-cone and single-hole nozzles. At a high 
pressure ratio, the hollow-cone nozzle exhibits 
stronger radial dispersion with higher velocity 
magnitudes and a well-defined conical structure, 
while the single-hole nozzle demonstrates deeper 
axial penetration with concentrated high-velocity 
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vectors along the jet axis. In contrast, at a low 
pressure ratio, the hollow-cone jet becomes more 
compact with reduced radial spread and lower 
velocities, while the single-hole jet shows 
diminished penetration and weaker velocity 
magnitudes. The higher pressure ratio enhances 
energy and momentum transfer, resulting in more 
dynamic and energetic jets with better velocity field 
resolution, whereas the lower pressure ratio 
produces weaker jets with limited dispersion and 
penetration, reducing their overall effectiveness for 
mixing and injection applications. 

 

Fig. 13 The velocity field estimation of the H2 jets 
from hollow-cone and single-hole nozzles at a 

pressure ratio of 10 (i.e., Pinj=100 bar, Pch=10 bar) 

4 CONCLUSION 

This study provides a detailed investigation of high-
pressure H₂ jets, focusing on the velocity field 

dynamics of hollow-cone and single-hole nozzles 
under varying pressure ratios (Pr = 20 and Pr = 10). 
The key findings are summarized as follows: 

(1) The hollow-cone nozzle exhibits significant 
radial dispersion, making it ideal for 
enhancing fuel-air mixing, whereas the 

single-hole nozzle achieves superior axial 
penetration with a focused and collimated 
jet structure. Higher pressure ratios amplify 
jet energy, resulting in enhanced 
penetration, dispersion, and better-
resolved velocity fields for both nozzles, 
while lower pressure ratios lead to weaker 
jets with reduced penetration and mixing 
efficiency. 

(2) To estimate the velocity fields of H₂ jets, 

three optical flow methods, including 
OpticalFlow_RAFT, 
OpticalFlow_Farneback, and 
OpticalFlow_PIV are compared. The 
results demonstrate that 
OpticalFlow_RAFT provides the most 
accurate velocity estimations, effectively 
capturing fine-scale turbulence and high-
resolution velocity gradients, making it 
ideal for detailed jet dynamics analysis. 
OpticalFlow_PIV offers a balance between 
accuracy and computational efficiency, 
capturing large-scale velocity trends 
effectively but lacking the resolution for fine 
turbulence details. In contrast, 
OpticalFlow_Farneback is computationally 
efficient but underestimates velocity 
magnitudes and struggles to resolve 
complex velocity fields, making it less 
suitable for precise jet characterization. 

(3) The study identifies challenges in velocity 
estimation for hollow-cone nozzles, where 
broad radial dispersion complicates the 
resolution of fine-scale turbulence. In 
comparison, the single-hole nozzle with 
concentrated flow structure allows for 
higher accuracy in velocity estimation, 
particularly in downstream regions. 
However, near-nozzle regions for both 
nozzles may show reduced precision due 
to optical limitations. 

(4) According to the jet behavior and velocity 
estimation using schlieren imaing 
combined with advanced optical flow 
methods, it provides critical insights for 
optimizing H2 injection strategies. These 
insights help balance mixing efficiency and 
precise delivery for H2-fueled, zero-
emission combustion technologies. 

5 FUTURE WORK  

However, due to time constraints, the optical flow 
methods used in this study have not been 
rigorously validated against ground truth data, such 
as particle image velocimetry (PIV) measurements 
or computational fluid dynamics (CFD) simulations. 
Future work will focus on a systematic validation of 
these optical flow methods under controlled 
conditions to quantify their performance, 
particularly in resolving fine-scale turbulence and 

Hollow Cone

Single-Hole

V
e
lo

c
ity

 V
e
c
to

r
V

e
lo

c
ity

 M
a

g
n
itu

d
e

V
e
lo

c
ity

 V
e
c
to

r
V

e
lo

c
ity

 M
a

g
n
itu

d
e



 

CIMAC Congress 2025, Zürich                Paper No. 042             Page 14 

 

velocity gradients. Additionally, exploring advanced 
hybrid methods or incorporating machine learning-
based velocity estimation techniques may improve 
the accuracy and efficiency of velocity field 
analysis. 
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