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ABSTRACT

The analysis of operating profiles and highly non-linear energy prices demonstrates that asset
reliability is critical, often required with relatively immature applications. It is therefore critical to analyze
extensive measured data sets quickly and concisely during product definition and launches.

Leveraging INNIO Group’s extensive fleet of connected assets, we understand behaviors of systems
across multiple orders of magnitude. Analytics have been developed connecting microscopic material
failure modes, to operational data.

By connecting these behaviors using advanced analytic techniques, multi-level digital twins provide
powerful prediction machines. The massive scale of more than 13,000 active engines connected to
the myplant platform  and the further use of AI techniques has allowed the rapid analysis of these
twins for powerful insights, enabling rapid decision making for product development. 

The evolution of the system has then progressed to allow edge-based twins enabling local control of
operating parameters to extend asset lifetime.

This has enabled the reduction of product maturity cycles by 70% using 30% of the analysis resource.

This paper describes the critical elements of this approach across product lifecycle.
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1. INTRODUCTION 

The continued evolution of the global energy markets, 
driven by factors such as fast-growing energy demand, 
the integration of renewables into the energy mix, and 
the emergence of new applications with high reliability 
requirements, is necessitating the rapid development of 
innovative energy solutions. These solutions must be 
tailored to meet the specific needs of different 
applications and customers and support their demands 
for reliability, sustainability, and efficiency in the energy 
sector. 

In this dynamic context, the ability to accurately model 
and represent energy systems becomes increasingly 
important. Beyond traditional engineering approaches, 
there is a growing need to focus on system reliability, 
ensuring that energy solutions not only integrate 
seamlessly with existing infrastructures but also 
enhance overall performance. This comprehensive 
understanding of system dynamics is essential to 
effectively complement renewable energy sources and 
address the challenges posed by evolving market 
demands. 

In this context, the key requirements for energy 
solutions to complement renewables can be 
summarized. 

1. Reliable power 

2. Maximum efficiency 

3. Minimum emissions 

4. Maximum power stability 

5. Rapid starting times 

6. Minimum life cycle and investment cost 

7. Regulatory compliance 

8. Safe operation 

9. Fuel flexibility 

This paper focuses on reliable power, examining how 
energy systems can maintain consistent and dependable 
performance. This is increasingly important as we 
observe a trend toward heightened reliability 
requirements that emphasizes critical operational 
modes and fault ride-through capabilities. 

To explore this aspect, we refer to IEEE 762 [1] as the 
standard for defining a state machine, which models the 
various operational states and transitions of power 
systems. According to the standard, a state machine 
represents the system's behavior through defined states 

and transitions between them. The general structure of 
this state machine is illustrated in Figure 1. 

 

Figure 1 IEEE762-2006 [1] state machine 

1.1. Innovative Integration in Energy System 
Development 

While the individual methodologies discussed in this 
paper, such as digital twins, state machines, and 
reliability simulations, are well-established in the field, 
the true innovation lies in the unprecedented level of 
integration achieved. By seamlessly combining these 
advanced tools within the engineering development 
process, we have created a powerful system that 
enhances predictive accuracy and accelerates product 
development. 

Additional innovation comes from how we integrate 
reliability simulations into the engineering process. 
Traditionally, reliability simulations are performed with 
proprietary software like Reliasoft and Relyence using 
reliability block diagrams or similar strategies. However, 
this method falls short in handling detailed modelling of 
energy demand and changing boundary conditions. To 
address these limitations, very high safety margins 
typically are introduced for boundary conditions such as 
required availability, emissions, and footprint. 

In this paper, we discuss how the combination of 
advanced digital tools for reliability enables us to 
produce a detailed simulation of the plant. This 
integrated approach not only increases the reliability 
and efficiency of energy solutions but also helps ensure 
compliance with boundary conditions while enhancing 
safety margins to maintain cost-effectiveness for the 
client. This sets a new standard for adaptability in 
response to evolving market demands and high 
reliability requirements. 

1.2. IEE762-2006 1 

This standard defines a series of definitions for ratios of 
unit states compared to period hours (PH), which refers 
to the time in the active state as per Figure 1. These 
definitions provide clear metrics for assessing asset 
performance. For clarity and precision, the quantities 
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referenced later in the document adhere to the specific 
formulas outlined here. 

Planned outage factor (POF) gives the ratio of planned 
outage hours (POH) to period hours. (1) This shows the 
impact of planned maintenance on an asset’s 
availability. 

𝑃𝑂𝐹 =  
௉ைு

௉ு
 × 100 (1) 

Unplanned outage factor (UOF) gives the ratio of 
unplanned outage hours (UOH) to period hours. This 
shows the impact of both unplanned outages (trips) and 
unplanned maintenance on an asset’s availability. (2) 

𝑈𝑂𝐹 =  
௎ைு

௉ு
× 100  (2) 

The forced outage factor (FOF) is a metric that 
represents the ratio of forced outage hours (FOH), which 
are unplanned shutdowns due to unexpected failures, to 
the total period hours. (3) 

𝐹𝑂𝐹 =  
ிைு

௉ு
× 100  (3) 

From this the overall availability factor (AF) can be 
derived. This is the ratio of available hours to period 
hours. (4) 

𝐴𝐹 =
஺ு

௉ு
× 100 (4) 

The standard expands on the ratio of states and deals 
with multi-unit indices and derating terms.  

Critically, the standard does not define reliability factor 
(RF) or mean time between forced outage (MTBFO). 
Working definitions of these are relatively straight-
forward, however. (5) 

𝑅𝐹 = 1 −  
ிைு

௉ு
× 100 = 1 − 𝐹𝑂𝐹   (5) 

MTBFO is calculated as the ratio of available operating 
hours (AOH) to the number of forced outages from 
operation (NFOO). (6) 

𝑀𝑇𝐵𝐹𝑂 =
஺ைு

ேிைை
  (6) 

By assessing availability factor, reliability factor, and 
MTBFO, the general performance of an asset or group 
of assets could be established. These methods did not, 
however, deal with the criticality of the demand at any 
given time or the availability of fuel. 

As referenced in Kundur's “Power System Stability and 
Control,”2 the supply of power, whether within a 
microgrid or a national grid, can be categorized based on 
various operational states and stability considerations. 

These categories help in understanding the dynamics 
and control mechanisms necessary for maintaining grid 
stability and reliability. The basic states defined by 
Kundur, which outline these operational categories, are 
illustrated in Error! Reference source not found.. 

The development of IEEE762 – 20233 now includes 
critical demand period and energy metrics and a new 
state reflecting resource availability. 

In this update the general Reliability and availability 
metrics remain unchanged, however there is now the 
option to define critical time periods and the relative 
metrics. Also, variable energy resources may be 
quantified appropriately. 

 

Figure 2 Power system operating states – Kundar2  

The relative complexity of the performance metrics has 
increased significantly, while the usefulness to the 
energy market has increased.  

In parallel, the deployment of digital infrastructure 
globally has led to the publication of the EN506004 series 
of standards. 

This series of standards has a separate definition of 
availability and, significantly, very specific requirements 
for power supply development. 

This standard specifies the intrinsic availability of 
infrastructure (Ai) under ideal operation and 
maintenance conditions as the ratio of MTBF to the total 
of MTBF and mean time to repair (MTTR). MTBF is the 
average time between system failures, while MTTR is 
the average time required to repair and restore the 
system to operational status. (7) 

𝐴௜ =
ெ்஻ி

ெ்஻ிାெ்்
  (7) 
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A critical assumption is that this is measured over 8,760 
operating hours and normally refers to the 
infrastructure ability to provide service. It is also critical 
that the MTBF>>MTTR by at least one order of 
magnitude. 

EN506004 does not define specific critical operating 
periods; instead, it specifies criticality classes for use 
cases and employs a 'nines' terminology, ranging from 1 
to 5, to represent varying levels of reliability 
requirements. The availability and annual downtime 
requirements outlined by EN50600 are detailed in 
Figure 3. 

 

Figure 3 EN506004 availability and annual downtime 

With one order of magnitude decrease in unreliability 
per nine, this serves as a useful classification of power 
supplies. This avoids the overreliance on MTBF statistics, 
which often are calculated using small numbers of 
failures and provide misleading comparisons.  

There is still a dependency on using MTBF and MTTR 
figures, however. Due to the log-normal distributions 
normally observed, any predictions must be simulated 
to understand variance and necessary redundancy 
concepts. 

 

Figure 4 Annual MTBF variation 

A typical distribution of TBF and TTR observed on a fleet 
of gensets operating with a MTBF of about 600 hours 
and MTTR of 5.4 hours is illustrated in Figure 4 and 
Figure 5 over an observation period of 8,760 hours. The 
results presented are calculated in accordance with the 
definitions introduced at the beginning of section 1.1 
with the equations 1 to 7. These distributions are 
consistent with Poisson distributions and are as 

expected for this number of events. The quantization 
observed on the MTBF plot is explained by the number 
of failures being an integer. 

 

Figure 5 Annual TTR variation 

It then is clear that a structured process is required to 
enable the development of robust plants regarding this 
natural variance in failures. 

In the case of EN506004, this approach guides the 
specification of certain redundancy requirements. 
However, the standard does not offer a structured 
method for analyzing the resultant availability. The 
availability classification defined by the standard is 
presented in Figure 6. 

The methodology for designing power solutions is 
increasingly moving away from single points of failure 
(SPOF) and toward architectures that incorporate 
varying levels of redundancy and independence. This 
shift is driven by the need to enhance reliability and 
lower the risk of high-consequence failures. As plant 
designs evolve from multiple generating assets 
connected to a single point of connection (SPOC) to 
independent chains of supply, it becomes essential to 
simulate the behavior of these assets. Such simulations 
help determine the optimal architectures that can 
withstand potential disruptions. 

A critical aspect of this process is basing simulations on 
realistic operating data whenever possible, thereby 
avoiding an over-reliance on "black box" assumptions. 
This helps ensure that the simulations accurately reflect 
real-world conditions and provide valuable insights into 
the performance of the power solutions. 

A further challenge arises when analyzing products for 
which the demand profile is not yet fully understood. As 
artificial intelligence (AI) continues to evolve, the 
demand characteristics for power solutions also change, 
resulting in unique power ramps that differ significantly 
from those observed in traditional grid supply systems. 
This evolution suggests that gensets may be particularly 
suited for AI data centers, where the demand for power 
can be highly variable and unpredictable. 
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To address these challenges, it is necessary to simulate 
product behavior across multiple plant configurations in 
parallel, even before the final demand case is known. 
This approach allows for a comprehensive 
understanding of how different configurations will 
perform under varying conditions, thereby helping to 
ensure that the power supply remains robust and 
reliable, regardless of the evolving demand 
characteristics. 

 

Figure 6 EN506002 summary of availability classification 

This paper will explore the advanced methodologies 
employed to swiftly integrate these simulations into 
the product development process, ensuring 
adaptability to evolving demand profiles and enhancing 
the reliability of power solutions. 

2. MAIN SECTION 

To build a prediction machine for estimating system 
unreliability, INNIO Group leverages our extensive 
experience. The required elements are integrated into 
the product development cycle, drawing from historical 
data and operational insights. This experience-driven 
approach helps ensure the prediction machine is 
tailored to both INNIO Group and our customers' 
specific needs. 

1. Requirements, architectures, and boundary 
conditions for the system to be developed.  

2. Analysis of current fleets with comparable 
configurations and applications.  

3. Definition of available simulations and quasi-
real-time twins.  

4. Analysis of operating fleets and twins to 
determine state machine behavior.  

5. Abstraction of data to represent application 
under development.  

6. Definition of necessary simulations and quasi-
real-time twins.  

7. Modification of development and re-
simulation to minimize delta to requirements.  

8. Parallel validation of both model and product 
during growth phase.  

9. Life-cycle tracking of performance. 

2.1. Requirements, architectures, and boundaries 

Prior to any comprehensive understanding of a system’s 
behavior, the appropriate requirements’ flow-down and 
functional analysis must be executed.  

The architecture(s) of the system should be defined and 
used to determine the appropriate transfer functions. It 
is critical to ensure that good system engineering 
practice is used and the system is appropriately 
specified. 

The system boundary conditions are critical and need to 
be clearly and unambiguously defined. This may not be 
possible in all cases, due to the inherent uncertainty of 
the application, but assumptions should be made, 
documented, and agreed. 

The use of p-chart methodology at this stage of the 
development is useful and facilitates the early 
estimation of failure modes. Interactions across 
domains, such as plant-level CFD analysis, is critical. In 
addition, climatic conditions may need to be considered 
as a significant input to availability studies. 

The use of systems engineering methodologies, Incose5, 
is critical to help ensure that the configuration and 
requirements remain under control during the 
development and that significant simulation time is not 
used on unrealistic combinations. 
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Figure 7 Power supply system cooling parameter analysis 

2.2. Analysis of current fleets’ comparable 
configurations and applications 

To effectively predict unreliability of the engine, site, or 
fleet, understanding and representing fleet 
configurations and operational profiles is essential. The 
baseline for this is to use the extended connected fleets 
already available.  

This section explores the complexities of configuration 
differences using the tree edit method and evaluates 
operational profiles and service intervals, providing 
insights crucial for enhancing predictive accuracy. 

2.2.1. Configuration 

The fleet configuration details the specific arrangement 
and components of each engine. With the INNIO Group 
fleet, we must deal with great variability in engine 
configurations – even among engines of the same type 
– because of the high level of customization that we 
offer to our customers.  

By analyzing these differences, we can tune the analysis 
and tailor maintenance strategies accordingly. This 
section explores the importance of configuration 
analysis as a foundation for accurate reliability 
predictions. 

Tracing all elements in the Bill of Materials (BOM) for 
engines presents significant challenges, particularly 
because not all activities are managed directly by INNIO 
Group. This often results in incomplete or inconsistent 
data, necessitating the use of realistic assumptions to 
bridge gaps. External suppliers and varying 
documentation standards further complicate the tracing 

process. Of particular importance are consumable 
components for which the replacement activities often 
are traced on site. For these components, it is important 
to combine the available service information with 
expected service and life models to best estimate when 
the parts are being replaced. Consequently, developing 
experience on how to make informed assumptions 
becomes essential to help ensure a comprehensive 
understanding of configuration differences.  

Once a clear understanding — or a well-founded 
assumption —of the BOM for all units is available, it is 
crucial to ensure that the complexity of the 
configurations used in the prediction machine aligns 
with what is expected in the field. To achieve this, a 
method is needed to numerically assess the distance 
between any two configurations in terms of how many 
components differ and at which hierarchical level these 
differences appear.  

 

Figure 8 BOM variance tree edit diagram 

The tree edit method, as detailed in Benjamin Paaßen's 
supplementary material for the ICML 2018 paper, "Tree 
Edit Distance Learning via Adaptive Symbol 
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Embeddings,"6 provides a systematic approach to 
identify and quantify these variations, offering valuable 
insights into their potential impact on system reliability. 
A visual representation of this method applied to a small 
fleet of our engines is provided in Figure 8. Here, we can 
observe how natural clusters can be formed based on 
BOM similarity, illustrating the method's effectiveness in 
grouping engines with similar configurations. 

2.2.2.  Operational profiles 

Operational profiles, defined primarily by the electrical 
and thermal demand over time from customers along 
with the specific requirements on engine availability, are 
crucial for the prediction machine to estimate fleet 
reliability.  

Different operational environments and usage patterns 
significantly affect reliability and influence how units can 
be serviced. Similar to configuration analysis, it is 
essential to ensure that the prediction machine is tuned 
to adequately represent the way in which the units in 
the fleet are operated and how the operating profiles 
themselves differ from one another. The myplant 
platform, INNIO Group’s advanced digital platform, 
plays a critical role in this process by collecting and 
analyzing real-time data from engines and equipment. It 
enables precise monitoring and management of 
operational parameters, ensuring alignment with actual 
usage patterns. Furthermore, service intervals are 

determined and optimized based on customer 
necessities, helping to ensure that maintenance 
schedules are tailored to enhance reliability while 
accommodating specific operational demands. 

Once a fleet of comparable units has been identified, an 
initial screening for adequate operation, service history, 
and connectivity is critical to ensure that subsequent 
analysis is available.  

2.3. Definition of available baseline simulations 

As part of the development phase of products, several 
simulations are developed and executed to analyze the 
feasibility of the design and the compliance to the 
product requirements. During the design phase, the 
iterations between design, simulation, and validation 
follow the V-model. In particular, Figure 9 illustrates how 
field data is monitored during the validation phase. The 
additional step during the last phases of the validation is 
to develop reduced order models for key systems and 
critical components. The main critical systems are: 

- Control system 

- Thermal and energy transfer 

- Structural  

- Fluid-dynamics 

 

Figure 9 Application and operational analysis 
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The criticality of the simulations and system digital twins 
is driven by the results of the design failure mode and 
effects analysis (DFMEA) during the design phase. 
DFMEA defines which simulations are needed as 
detection and corrective actions. 

2.4. Analysis of operating fleets to determine state 
machine behavior 

A credible reliability analysis relies on accurately 
determining the operational states of each asset in a 
fleet, which requires extensive signal analysis and 
collaboration with controls engineers. In this work, the 
state machine is derived by processing a continuous 
stream of engine-generated messages. These messages 
provide detailed information on the machine 
performance, status, and malfunctions. Through the 
application of specific logics, the messages are 
processed into a sequence that determines the system's 
state at any given time. The logics define transitions 
between states but also identify causal alarms during 
forced outages. The causal alarms give information on 
the cause of the outage by analyzing the chain of events 
leading to the shutdown. 

 

Figure 10 IEEE7621 genset operating states structure 

To further enhance our understanding of trip logic, 
especially in legacy systems with diverse versions of 
control code, we employ Large Language Models (LLMs). 
These models allow us to process and analyze control 
code, extracting the logic of trips across different 
software versions. This strategy needs to be combined 
with expert input, as it is essential to correctly 
characterize the logic and ensure that the 
interpretations align with the nuanced understanding of 
experienced engineers. By integrating LLMs with expert 
insights, we achieve a comprehensive analysis that 
accurately reflects the operational realities of our 
systems. 

When deriving the state machine, certain states, such as 
planned and unplanned maintenance, cannot be 
automatically calculated and require physical input from 
the unit. Initially, during early development stages, this 
input is best gathered remotely from the asset itself, 
using scheduled jobs across the entire fleet. As the logic 
becomes more established, it can be implemented on 
edge devices deployed directly on individual units. These 
edge devices enable real-time state determination, 

effectively creating a digital twin that provides a virtual, 
real-time representation of the machine’s behavior. 

Once the state machine is established, it can be mapped 
onto other frameworks such as the one defined by the 
IEEE7621 standard, thereby standardizing reliability 
reporting and requirement compliance efforts. While 
IEEE762 provides a detailed framework, other 
standards, such as EN506004, lack a specified state 
machine. This approach’s flexibility enables the 
development and implementation of state machines 
tailored to their specific regulatory and operational 
environments. 

 

Figure 11 Genset state machine viewed as a time series 
per asset selected asset 

 

Figure 12 Markov diagram individual unit in the INNIO 
Group prediction machine 

 A semi-automatic analysis of the control system 
operating messages is correlated to IEEE7621 operating 
states. This is supplemented by user input to the control 
system to determine actioned service activities. 

Error! Reference source not found.  highlights the set of 
states composing the state machine defined for the 
INNIO Group fleet. These states are selected among 
those proposed by the IEEE762 standard. Additionally, 
Error! Reference source not found. represents the 
resulting state machine computed for a representative 
asset in the fleet. Finally, based on the set of states 
defined by the IEEE762, Figure 12 shows the proposed 
Markov diagram that the INNIO prediction machine is 
adopting for the simulation of an asset. 

2.5. Abstraction of data to represent application 
under development 

This step consists of transforming the raw data. It 
involves cleaning, aggregating, and normalizing the data 
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so that it accurately represents the application. Key 
information — such as boundaries, environmental 
conditions, and software update cycles — is 
consolidated into the dataset to represent the 
application under development. This enables the data to 
focus on the factors most relevant to the reliability 
calculations and optimization while filtering out noise or 
irrelevant variation. 

In addition, based on the delta analysis of the baseline 
fleet, it is important to handle the differences in 
configuration and application. For configuration 
differences, resolved failure modes should be removed 
and new failure modes identified during the added 
DFMEA process with a clear assumption stated 
regarding the failure pattern. For application 
differences, the Parameter-Chart created should be 
updated with appropriate noise factors and, 
subsequently, updated assumptions regarding failure 
patterns. 

A special case is when control software is updated 
resulting in an alternative system response, and the 
assumptions regarding the behavior should be validated 
during test phases. 

All assumptions regarding changes must be clearly 
documented as part of the development process as 
validation of these assumptions is critical. 

2.6. Definition of necessary simulations and quasi-
real-time twins  

To effectively predict system reliability and 
performance, the integration of simulations and quasi-
real-time digital twins is essential. These tools provide 
an accurate, dynamic representation of the system's 
behavior and allow the incorporation of real-world 
operating conditions into the development process. The 
following components form the foundation of the 
required simulations and twins: 

2.6.1. Asset configuration and part swaps 

A quasi-real-time update of the BOM is critical to 
maintaining an accurate record of the asset 
configuration that incorporates maintenance activities 
and part swaps. This helps ensure that the predictive 
model reflects the current state of the system, 
accounting for component-level changes and their 
potential impact on performance. By integrating these 
updates, the simulation framework adapts dynamically 
to represent the true operational state, which is vital for 
reliable performance and failure analysis. 

2.6.2. Controls twin 

The controls twin is a quasi-real-time simulation model 
focused on the control system of the asset. It provides 
insights into the marginal distance to trips and 
deviations from optimal performance. This twin enables 
precise monitoring of control parameters and their 
interaction with other systems, helping to ensure that 
the asset operates within safe and efficient boundaries. 
Early detection of deviations allows for pre-emptive 
adjustments to avoid potential failures or suboptimal 
performance. 

2.6.3. Thermal and energy twin 

The thermal and energy twin models the thermal 
dynamics and energy flows within the asset under 
varying operating conditions. It captures the impact of 
environmental factors, load variations, and operational 
profiles on system performance and temperature 
distributions. By understanding these thermal and 
energy characteristics, this twin helps optimize cooling 
systems, prevent overheating, and enhance overall 
efficiency, particularly in demanding applications with 
fluctuating thermal loads. 

2.6.4. Structural twin 

The structural twin evaluates the impact of 
environmental and operating conditions on vibrations 
and component life. This twin is essential for 
understanding the long-term structural integrity of the 
asset, particularly under harsh conditions or high-stress 
scenarios. It incorporates real-time data on 
environmental influences, such as temperature 
fluctuations and mechanical loads, to predict wear and 
fatigue. This predictive capability is crucial for designing 
maintenance schedules and identifying potential failure 
points before they manifest in the field. 

Beyond their role in simulating current asset 
performance, these quasi-real-time models also serve as 
powerful tools for optimizing the behavior of 
applications under development. By incorporating real-
world data alongside artificial changes representing 
potential design or operational modifications, these 
models enable accurate prediction of new asset 
behaviors. This capability significantly enhances the 
development process by allowing iterative optimization 
grounded in realistic scenarios. 

2.6.5. Integration of real data and artificial changes 

The models leverage extensive real-world data collected 
from operating fleets to enable predictions that are 
based on actual asset performance under various 
conditions. This data is supplemented by artificial 
changes, such as simulated adjustments to control 
parameters, altered component configurations, or 
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hypothetical operating conditions. By exploring the 
combined effects of real data and controlled 
modifications, the models provide a deeper 
understanding of how proposed changes might 
influence system reliability, efficiency, and 
performance. 

2.6.6. Enhanced prediction accuracy 

The integration of real data and artificial changes 
enhances prediction accuracy by accounting for 
complex interactions between system components and 
environmental conditions. For instance, the thermal 
twin can simulate the impact of introducing new cooling 
technologies under specific ambient conditions, while 
the structural twin can predict how different load 
profiles affect component life. This detailed insight 
enables the identification of potential bottlenecks or 
vulnerabilities that might not be apparent through 
conventional testing methods. 

2.6.7. Optimization of application behavior 

Using these enhanced predictive capabilities, the 
models facilitate optimization in several key areas: 

 Design refinement: By simulating the effects of 
various design adjustments, the models help 
identify configurations that increase 
performance while lowering risks. 

 Control strategy optimization: The controls 
twin enables fine-tuning of algorithms to 
improve stability and efficiency, reducing the 
likelihood of trips or operational deviations. 

 Maintenance planning: The asset configuration 
and structural twins inform more precise 
maintenance schedules, helping to ensure 
reliability while lowering life-cycle costs. 

 Operational strategy development: The 
thermal and energy twins allow for improved 
operating conditions, such as load 
management or thermal cycling, to enhance 
performance under specific application 
scenarios. 

2.6.8. Continuous feedback loop 

The iterative nature of this approach creates a feedback 
loop between the model predictions and actual 
operational data. Initial simulations guide the 
development of the application, while subsequent field 
data validates and refines the models. This continuous 
improvement process helps ensure that the predictions 
remain accurate and relevant, even as the application 
evolves or faces new operational challenges. 

By leveraging these models for optimization, developers 
can confidently make data-driven decisions, 
accelerating the development process and ensuring that 
new applications achieve their performance and 
reliability objectives with minimal risk. 

2.7. Modification of development and re-simulation 
to minimize delta to requirements 

The optimization of the system behavior to enhance 
reliability then can be done using simulations and 
structured available data. 

This step combines statistical modelling insights with 
design trade-offs to optimize operational modes, 
maintenance schedules, and resource allocations for the 
specific application and requirements. This collectively 
reduces the likelihood of failure. Feedback loops from 
quasi-real-time digital twins and ongoing field data 
collection helps to verify the optimization under realistic 
scenarios. 

Possible solutions tweaking design variables, control 
algorithms, or usage parameters drive improvements 
that balance performance requirements, cost 
considerations, and reliability objectives. 

As an example, the selection of power node becomes 
critical in a multi-unit plant development with a 
redundancy concept. As the number of independent 
units increases, the observed plant reliability tends to 
increase once adequate redundancy is achieved. 

 

Figure 13 Intrinsic availability Monte Carlo distribution 
1 

Figure 13 presents some significant results derived from 
a Monte Carlo simulation. The x-axis illustrates the 
resulting availability for the simulated fleet, while the y-
axis, labelled "Frequency," indicates the percentage of 
simulations that exhibit a reliability value within each 
specific bin. This visualization effectively highlights the 
distribution of reliability outcomes across the simulated 
scenarios, providing valuable insights into the fleet's 
performance under the tested conditions. In the 
example, given a redundancy strategy of 𝑛 + 2 assets, 
the simulation results in a 30% chance of not meeting 
99.9% over a year of plant operation. In this case, and as 
shown in Figure 14, the use of assets with a lower 
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probability to trip can be seen to yield a much lower 
probability to not meet availability targets. 

 

Figure 14 Intrinsic availability Monte Carlo distribution 2 

2.8. Parallel validation of both model and product 
during growth phase (reduced order models) 

As documented extensively by Duane7 and Crow-
AMSSA8, it is critical to correctly design the launch of 
new products. Too rapid an introduction and discovery 
of new failure modes will outstrip the ability to update 
products, while with too slow an introduction, new 
failure modes will remain hidden. 

 

Figure 15 Duane model of reliability growth 

An estimation of the growth co-efficient based on 
similar developments is useful to plan ramp strategies. 
With assets that are being commissioned in large power 
plants, it is critical to determine a rapid method to apply 
changes from launch learnings while remaining in 
configuration control. 

2.9. Life-cycle tracking of performance 

As plants are commissioned, it is crucial to ensure 
continuous performance tracking. This is most 
effectively achieved through the development of 
analytics portals for connected assets. These systems 
enable real-time interrogation, allowing for the display 
of corresponding control system messages that indicate 
state changes during outages. 

From this analysis and corresponding service events, 
rapid root cause analysis can be executed. It is critical 
that all failure modes are understood, particularly in the 
early stages of a product’s life cycle where it is 
impossible to estimate the frequency of events. At this 
stage, the organization must already be in place to 

rapidly deploy fixes to the fielded fleet, and it is critical 
to have a pragmatic and open approach. 

The use of a failure reporting and corrective action 
(FRACAS) database correlating specific actions to 
observed outages is critical, and cycle time to retirement 
of issues must be such that failure fix rate is significantly 
greater than failure discovery rate.  

Care also is required with respect to wear out failure 
modes as the failure mode will not happen until a large 
fleet of units also may be deployed. In this case, it is 
critical that appropriate actions are specified in the 
DFMEA with outcomes validated on fleet leaders. 

3. APPLICATION OF METHODS AND BENEFITS 

3.1. Infrastructure 

It is obvious that for this methodology to work there 
must be the ability to capture the operating data of the 
assets as part of an internet of things architecture. The 
specific sampling frequency, sensor signals, and controls 
messages will vary, depending on the product. Within 
this architecture it is important also to determine the 
processing of the measurements toward the state 
machine and ensure that timing issues are resolved.  

3.2. Product architecture 

To ensure reliability growth, the product itself must be 
able to be modified rapidly. The modularity and 
testability of subsystems plays a vital role. 

With independent and testable sub-functions, software 
twins and hardware in the loop testing can be used to 
simulate outcomes. 

The application of system engineering to subsystem 
boundaries also significantly reduces the cycle time to 
resolve issues as less time is spent on fault trace through 
activity. 

3.3. Organization 

The adoption of agile methodologies during product 
launch phase has been shown to massively simplify and 
accelerate launches. 

With a clear availability requirement, the epic 
performance standard is set, normally with stories 
relating to launch stages. Sprints then are used to 
accelerate problem identification and fixing. Daily scrum 
helps ensure the launch team communicates. 

It also is critical that the organization is available to 
support during this phase with appropriate controls in 
place to ensure the team has a stable methodology 
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including appropriate response to inevitable failure 
mode discovery.  

 

Figure 16 Genset outage pareto analysis 

Communication of root cause analysis should be centralized in a single system that has a direct connection to the 
observed unit events. 

A key aspect of the organization is also the clear acceptance that the aim of the growth phase is to discover and 
resolve hidden failure modes. A pragmatic and positive approach is required, with launch teams prepared and 
available to work quickly on solutions.  

It is critical to establish acceptance test phases, with clear outcomes and appropriate planning.  

3.4. Benefits 

3.4.1. Product development acceleration 

The journey from the concept phase to achieving availability targets is a critical aspect of product development. The 
integration of a digital engineering reliability process has significantly accelerated program timelines and equipped 
us with the tools necessary to quantify this acceleration. 

Key to this advancement is the automation of state machines and metrics at the fleet level, enabling comprehensive 
daily analysis of entire fleets. This capability allows for the prompt detection of failures and effective resolution on a 
first-event basis. Furthermore, the state machine facilitates tracking the reliability growth process by employing tools 
such as the Duane model. 

In addition to these advancements, the implementation of fleet-level reliability simulation serves as a powerful 
enabler for accelerating product development. This simulation capability allows for the prediction of fleet behavior 
in scenarios where historical data is unavailable, thereby identifying critical areas for reliability improvement. 
Moreover, it supports a better response to detected failures by enabling simulations of the impact that proposed 
solutions will have on the fleet. 

In 2018, a typical program aimed at halving product unavailability required approximately three years and substantial 
engineering efforts. However, by 2024, an equivalent program was completed in just six months, and it used only 
60% of the resources. This remarkable achievement represents a reduction to 10% of the total man-hours previously 
spent, with the launch time decreased by an impressive 85%. 

By enabling daily analysis of the fleet state machine, issues were effectively addressed on a first-event basis, thereby 
eliminating the potential costs of future failures. As a result, the cost of quality at product launch, relative to sales, 
was reduced by a factor of 90%. 
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Moreover, the accelerated pace of improvement helps ensure that the launch phase is both dependable and 
plannable within the organization. This newfound efficiency not only enhances the reliability of product launches but 
also significantly optimizes resource allocation and cost management. 

A list of the main tools that INNIO Group leverages to achieve the results described in this section is provided in 

Table 1. A brief description of short- and long-term 
impact of the tools is provided. 

 

 

 

Figure 17 Life-cycle outage tracking tool

3.4.2. Development of organizational and systemic 
learning 

The correlation of events to measured system behavior 
and rapid resolution also then builds the engineering 
knowledge of the design space. This reduces the 
probability of future design having repeat issues. 

By coding the state patterns, alarms, and signal behavior 
directly into a learning system, both development and 
customer support diagnostics are accelerated. 

4. CONCLUSIONS 

The development of large, connected systems of 
generating assets is a powerful resource for accelerating 
product development. Traditional design-for-reliability 
methods must be updated to align with this evolution. 
The field has firmly moved into the digital engineering 
domain, employing baseline comparisons, quasi-real-
time digital twins, synchronous state machines, and 
machine learning for engine diagnosis. 
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By incrementally adding capabilities and tools, we have 
achieved significant launch accelerations. This 
methodology does not eliminate the need for expert 
engineering but helps ensure maximum focus on the 
physics of failure. 

Culturally, the most significant transformation is 
observed in the creativity of engineers, whose problem-

solving abilities have become evident, fostering a 
pragmatic and positive approach to product 
development as the norm. The integration of additional 
digital twins into this methodology also is under 
development, with power system analytics yielding 
energy management results.  

  



 

CIMAC Congress 2025, Zürich                Paper No. 25             Page 14 

 

 Short-Term Impact Long-Term Impact 

Prediction Machine Enhances immediate reliability predictions, 
improving the way we react to unexpected 
failures. 

Builds a comprehensive reliability database, 
improving future predictions. 

State Machine Standardizes reliability reporting, improving 
immediate compliance efforts. 

Establishes a consistent framework for long-
term reliability analysis. 

Quasi-Real-Time 
Digital Twins 

Provides real-time insights into system 
performance, allowing for quick adjustments. 

Facilitates ongoing optimization of system 
design and operation. 

myplant Engineering 
Platform 

Enables precise monitoring and management of 
operational parameters. 

Supports continuous improvement in 
operational efficiency and reliability. 

Tree Edit Method Improves understanding of configuration 
differences, aiding immediate maintenance 
strategies. 

Enhances long-term reliability predictions by 
refining configuration analysis. 

FRACAS Provides rapid root cause analysis, reducing 
downtime in the short term. 

Builds a knowledge base for long-term failure 
prevention and corrective action planning. 

Table 1 Impact and effect of main tools 

  



 

CIMAC Congress 2025, Zürich                Paper No. 25             Page 15 

 

5. FIGURES, TABLES AND EQUATIONS 

Figure 1 IEEE762-2006 [1] state machine ...................... 1 

Figure 2 Power system operating states – Kundar [2] .. 2 

Figure 3 EN50600 [4] Availability and annual downtime
 .......................................................................................... 3 

Figure 4 Annual MTBF variation ..................................... 3 

Figure 5 Annual TTR variation ......................................... 3 

Figure 6 EN50600 [2] summary of availability 
classification..................................................................... 4 

Figure 7 Power supply system cooling parameter 
analysis ............................................................................. 5 

Figure 8 BOM variance tree edit diagram ...................... 5 

Figure 9 Application and operation analysis .................. 6 

Figure 10 IEEE762 [1] genset operating states structure
 .......................................................................................... 7 

Figure 11 Genset state machine viewed as a time series 
per asset selected asset .................................................. 7 

Figure 12 Markov diagram individual unit in the INNIO 
prediction machine ......................................................... 7 

Figure 13 Intrinsic availability Monte Carlo distribution 1
 .......................................................................................... 9 

Figure 14 intrinsic availability Monte Carlo distribution 2
 ........................................................................................ 10 

Figure 15 Duane model of reliability growth ............... 10 

Figure 16 Genset outage pareto analysis ..................... 11 

Figure 17 Life-cycle outage tracking tool ..................... 12 

 

6. DEFINITIONS, ACRONYMS, ABBREVIATIONS, 
(EQUATIONS) 

 

AF: Availability factor (4) 

AH: Available hours 

Ai: Intrinsic availability (7) 

AI: Artificial intelligence 

AOH: Available operating hours 

BOM: Bill of material 

CFD: Computational fluid dynamics 

DFMEA: 
Design failure mode and effects 
analysis 

FOF: Forced outage factor (3) 

FRACAS: 
Failure reporting and corrective 
action system 

MTBFO /MTBF: 
Mean time between failure / forced 
outage (6) 

MTTR: Mean time to repair 

NFOO: Number of forced outages from 
operation 

PH: Period hours 

POF: Planned outage factor (1) 

POH: Planned outage hours 

RF: Reliability factor (5) 

SPOC: Single point of connection 

SPOF: Single point of failure 

TBF: Time between failures 

TTR: Time to repair 

UOF: Unplanned outage factor 

UOH: Unplanned outage hours (2) 
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